
- •Авторы-составители:
- •1.Цели и задачи дисциплины
- •1). Цель, задачи, структура дисциплины и ее место в учебном процессе.
- •Требования к уровню освоения содержания дисциплины
- •Объем дисциплины Объем дисциплины и виды учебной работы Распределение часов по темам и видам учебной работы
- •4. Содержание курса
- •1. Основные понятия, определения и теоремы теории вероятностей* Введение
- •1.1. Алгебра событий. Основые понятия теории множеств
- •1.2. Основные определения: испытание, событие. Классификация событий
- •1.3. Классическое определение вероятности. Свойства, вытекающие из этого определения
- •Значение вероятности
- •1.4. Основные теоремы теории вероятностей
- •1.5. Зависимые и независимые события
- •2. Формула полной вероятности и формула Бейеса
- •2.1. Формула полной вероятности
- •3. Случайные величины
- •3.1. Дискретные случайные величины
- •Ряд распределения случайной величины X
- •3.4. Ожидаемое среднее значение дискретной случайной величины
- •Вычисление математического ожидания числа рекламных
- •3.5. Свойства математического ожидания случайной дискретной величины
- •Возможные исходы лотереи
- •3.6. Ожидаемое среднее значение функции случайной величины
- •Ряд распределения числа месячных продаж
- •К вычислению среднего ожидаемого значения
- •3.7. Дисперсия дискретной случайной величины
- •К вычислению дисперсии случайной величины
- •3.9. Дисперсия линейной функции случайной величины
- •4. Законы распределения дискретных случайных величин
- •Формула Бернулли. Биномиальные вероятности
- •4.3. Биномиальный закон распределения
- •Биномиальное распределение
- •Биномиальное распределение X – числа гербов, появляющихся
- •Фрагмент таблиц ряда и функции биномиального распределения
- •Биномиальное распределение числа покупателей
- •Распределения
- •4.5. Распределение Пуассона
- •Закон распределения Пуассона
- •Сравнение вероятностей, полученных по формулам Бернулли и Пуассона
- •4.6. Гипергеометрическое распределение
- •Гипергеометрический закон распределения
- •Биномиальный закон распределения
- •Гипергеометрическое распределение
- •4.7. Производящая функция
- •4.8. Мультиномиальное распределение
- •4.9. Геометрическое распределение
- •5. Непрерывные случайные величины
- •6. Законы распределения непрерывных случайных величин
- •7. Закон больших чисел
- •7.1. Принцип практической уверенности. Формулировка закона больших чисел
- •7.2. Неравенства Маркова и Чебышева
- •Выражения (7.1–7.2) справедливы для дискретных и непрерывных случайных величин.
- •7.4. Теорема Бернулли
- •7.5. Теорема Пуассона
- •Контрольные задания по курсу теории вероятностей Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Вариант 16
- •Вариант 17
- •Вариант 18
- •Вариант 19
- •Вариант 20
- •Вариант 21
- •Вариант 22
- •Вариант 23
- •Вариант 24
- •Вариант 25
- •Вариант 26
- •Вариант 27
- •Вариант 28
- •Вариант 29
- •Вариант 30
- •Вариант 31
- •Вариант 32
- •Вариант 33
- •Вариант 34
- •Вариант 35
- •Вариант 36
- •Вариант 37
- •Вариант 38
- •Вариант 39
- •Вариант 40
- •Математическая статистика Теория вероятностей и математическая статистика – основной инструментарий для прикладной статистики
- •Дисперсией случайной величины х называется число dx , равное математическому ожиданию квадрата отклонения случайной величины от своего математического ожидания: . (1.4)
- •Контрольные вопросы и задачи
- •Статистическое оценивание
- •Интервальная оценка для генеральной доли
- •Контрольные вопросы и задачи
- •Тема 3. Статистическая проверка гипотез
- •Общая логическая схема статистического критерия.
- •Проверка гипотезы о значении генеральной средней
- •Проверка гипотезы о значении дисперсии генеральной совокупности
- •Сравнение наблюдаемой относительной частоты с гипотетической вероятностью появления события
- •Гипотеза об однородности рада вероятностей
- •Гипотезы о виде законов распределения генеральной совокупности
- •Контрольные вопросы и задачи
- •Тема 4. Методика статистического анализа количественных и качественных показателей
- •Контрольные вопросы и задачи
- •Тема 5. Многомерные статистические методы
- •Темы практических и семинарских занятий, тематических дискуссий
- •Задания для самостоятельной работы студентов
- •1.Методы анализов рядов динамики. Особенности моделирования рядов динамики с помощью корреляционного - регрессионного анализа
- •2. Понятие о закономерности распределения. Изучение формы распределения
- •3. Матрицы и таблицы сопряженности
- •4.Понятие о статистическом графике. Элементы статистического графика
- •5. Классификация видов графика: диаграммы сравнения, структурные диаграммы и диаграммы динамиков. Статистические карты
- •6. Условия типичности средних величин
- •7. Понятие малой выборки и методы расчета ее средней ошибки
- •8. Основные направления применения выборочного наблюдения в социально-экономических исследованиях
- •9. Взаимосвязи социально-экономических явлений и процессов, задачи их статического изучения.
- •10. Роль качественного анализа в исследовании связей
- •11. Основные статистические методы изучения связей в торговле и сфере услуг: метод параллельных данных, метод аналитических группировок, графический метод, балансовый метод.
- •12.Применение дисперсионного анализа в экономико-статистических исследованиях
- •13. Регрессионное уравнение как форма аналитического выражения статистических связей
- •14. Способы отбора факторных признаков при построении регрессионных моделей
- •15. Оценка результатов корреляционно-регрессионного анализа
- •7.Темы курсовых/контрольных работ/рефератов Варианты контрольных работ для студентов заочной формы обучения всех специальностей Вариант первый
- •Вариант второй
- •Вариант третий
- •Вариант четвертый
- •Вариант пятый
- •Вариант шестой
- •Вариант седьмой
- •Учебно-методическое обеспечение Литература:
- •16. Елисеева и.И., Юзбашев м.М. – Общая теория статистики. Учебник - м.: Финансы и статистика, 2005. Материально-техническое и информационное обеспечение дисциплин
Вариант 15
Задача 1. Вероятность для компании, занимающейся строительством терминалов для аэропортов, получить контракт в стране А равна 0,4, вероятность выиграть его в стране В, равна 0,3. Вероятность того, что контракты будут заключены и в стране А, и в стране В, равна 0,12. Чему равна вероятность того, что компания получит контракт хотя бы в одной стране?
Задача 2. Среди студентов института по результатам зимней сессии 30% первокурсников имеют только отличные оценки, среди второкурсников таких студентов 35%, на третьем и четвертом курсе их 20% и 15% соответственно. По данным деканатов известно, что на первом курсе 20% студентов сдали сессию только на отличные оценки, на втором – 30%, на третьем – 35%, на четвертом – 40% отличников. Наудачу вызванный студент оказался отличником. Чему равна вероятность того, что он (или она) – третьекурсник.
Задача 3. Предположим, что среднее число посетителей, прибывающих в банк в течение 30 минут, равно 5. Банку необходимо знать вероятность того, что 4 посетителя прибудут в банк в течение 30 минут.
Задача 4. Пьер работает в пункте по обмену валюты в офисе аэропорта Орли в Париже. Его пункт открыт ночью, когда банк аэропорта закрыт, и он делает в основном свой бизнес на туристах, возвращающихся в Америку, которые хотят обменять франки на доллары. Из опыта Пьер знает, что потребность в долларах в любую ночь в течение сезона приблизительно подчиняется нормальному закону распределения со средней $25000 и средним квадратическим отклонением, равным $5000. Если Пьер сохраняет много наличности, то он должен платить штраф (процент за наличность). Если денег не хватает, то он должен посылать человека в круглосуточно работающее отделение банка за получением наличности, а это тоже стоит денег. Пьер хотел бы иметь в течение ночи такую сумму денег, чтобы с уверенностью 85% покрывать требующуюся на ночь сумму валюты. Помогите Пьеру определить требуемую сумму долларов.
Задача 5. Оцените вероятность того, что при 1000 подбрасываниях монеты герб появится от 400 до 600 раз?
Задача 6. Составьте задачу по изученному материалу курса теории вероятностей, используя предметную область экономики. Решите задачу и приведите пояснения.
Вариант 16
Задача 1. Какова вероятность того, что последняя цифра наугад набранного телефонного номера окажется равной или кратной 3?
Задача 2. Директор фирмы имеет 2 списка с фамилиями претендентов на работу. В первом списке – фамилии 5 женщин и 2 мужчин. Во втором списке оказались 2 женщины и 6 мужчин. Фамилия одного из претендентов случайно переносится из первого списка во второй. Затем фамилия одного из претендентов случайно выбирается из второго списка. Если предположить, что эта фамилия принадлежит мужчине, чему равна вероятность того, что из первого списка была перенесена фамилия женщины?
Задача 3. В карточной игре игрок, который извлекает из колоды карт (52 карты) валет или даму, выигрывает 15 очков; тот, кто вытащит короля или козырного туза, выигрывает 5 очков. Игрок, который достанет любую другую карту, проигрывает 4 очка. Если Вы решили участвовать в этой игре, определите сумму очков среднего ожидаемого выигрыша.
Задача 4. Доля протеина в пакете с сухим кормом для собак – нормально распределенная случайная величина с математическим ожиданием 11,2% и стандартным отклонением 0,6%. Производителям корма необходимо, чтобы в 99% продаваемого корма доля протеина составляла не меньше х1,%, но не более х2, %.
Задача 5. Принимая одинаково вероятным рождение мальчика и девочки, оцените с помощью теоремы Бернулли вероятность того, что из 1000 родившихся детей мальчиков будет от 465 до 535.
Задача 6. Составьте задачу по изученному материалу курса теории вероятностей, используя предметную область экономики. Решите задачу и приведите пояснения.