Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМК ТВиМС.doc
Скачиваний:
14
Добавлен:
25.08.2019
Размер:
5.53 Mб
Скачать

Вариант 7

Задача 1. В ходе исследования потребительского рынка проводили оп­рос потребителей. В частности, один из вопросов касался сорта зубной пасты, которую использует потребитель. Если известно, что 14% населения используют сорт A, a 9% – сорт В, то чему равна вероятность того, что случайно выбранный человек будет использовать одну из двух паст. (Предполагается, что в данный момент человек использует только одну пасту).

Задача 2. В корпорации обсуждается маркетинг нового продукта, выпускаемого на рынок. Исполнительный директор корпорации желал бы, чтобы новый товар превосходил по своим характеристикам соответствующие товары конкурирующих фирм. Основываясь на предварительных оценках экспертов, он оценивает вероятность более высокой конкурентной способности нового товара по сравнению с аналогичными в 0,5; одинаковой – в 0,3, а вероятность того, что новый товар окажется хуже по качеству, – в 0,2. Опрос рынка показал, что новый товар более высокого качества и конкурентоспособен. Из предыдущего опыта проведения таких опросов следует, что если товар действительно конкурентоспособный, то предсказание такого же вывода имеет вероятность, равную 0,7. Если товар такой же, как другие аналогичные, то вероятность того, что опрос укажет на его превосходство, равна 0,4. И если товар более низкого качества, то вероятность того, что опрос укажет на товар более высокого качества, равна 0,2. С учетом результата опроса оцените вероятность того, что товар действительно конкурентоспособный?

Задача 3. Прибытие посетителей в банк подчиняется закону Пуассона. Ответьте на следующие вопросы, предполагая, что в среднем в банк каждые три минуты входит один посетитель:

  1. Чему равна вероятность того, что в течение 1 минуты в банк войдет один посетитель?

  2. Чему равна вероятность того что, по крайней мере, три посетителя войдут в банк а течение одной минуты?

Задача 4. Найдите стандартную нормально распределенную случайную величину, отсекающую площадь 0,575 (слева).

Задача 5. Для определения средней урожайности на площади 100000 га взято в выборку по одному гектару от каждого участка размером 100 га. Определите вероятность того, что средняя выборочная урожайность будет отличаться от действительной средней по всей площади не более чем на 0,5 ц, если дисперсия урожайности на отдельных участках (по 100 га) не превышает 2 ц.

Задача 6. Составьте задачу по изученному материалу курса теории вероятностей, используя предметную область экономики. Решите задачу и приведите пояснения.

Вариант 8

Задача 1. В ходе исследования потребительского рынка проводили оп­рос потребителей. В частности, один из вопросов касался сорта зубной пасты, которую использует потребитель. Известно, что 14% населения используют сорт A, a 9% – сорт В. Предположим, что вопрос о зубной пасте был сформулирован так: «Какие из двух видов зубной пасты Вы использовали в последний месяц?» Потребитель может ответить, что использовал более одного вида зубной пасты. Предположим, что приблизительно 1% людей использует 2 вида зубной пасты в течение месяца. Чему равна вероятность того, что случайно выбранный человек использовал, по крайней мере, одну из двух паст в течение месяца?

Задача 2. Медицинский тест на возможность вирусного заболевания дает следующие результаты:

  1. Если проверяемый болен, то тест даст положительный результат с вероятностью 0,92.

  2. Если проверяемый не болен, то тест может дать положительный результат с вероятностью 0,04.

Поскольку заболевание редкое, то ему подвержено только 0,1% населения. Предположим, что некоторому случайно выбранному человеку сделан анализ и получен положительный результат. Чему равна вероятность того, что человек действительно болен?

Задача 3. Некоторый ресторан славится хорошей кухней. Управляющий ресторана хвастает, что в субботний вечер в течение получаса подходит до 15 групп посетителей.

  1. Чему равна вероятность того, что в течение 5 минут не подойдет ни одного посетителя?

  2. Чему равна вероятность того, что в течение 10 минут подойдет восемь групп посетителей?

  3. Чему равна вероятность того, что три или более групп посетителей прибудут в ресторан в течение 10-минутного промежутка времени?

Задача 4. Найдите Z такое, чтобы Р(Z>z)=0,28.

Задача 5. Определите с вероятностью (надежностью) не менее 0,8, какою может быть максимальное отклонение выборочной средней урожайности от средней урожайности по всей площади, составляющей 10000 га, если с каждого участка размером 200 га в выборку было взято по одному гектару, а максимальная дисперсия на отдельных участках не превышает 2,5 ц.

Задача 6. Составьте задачу по изученному материалу курса теории вероятностей, используя предметную область экономики. Решите задачу и приведите пояснения.