
- •Авторы-составители:
- •1.Цели и задачи дисциплины
- •1). Цель, задачи, структура дисциплины и ее место в учебном процессе.
- •Требования к уровню освоения содержания дисциплины
- •Объем дисциплины Объем дисциплины и виды учебной работы Распределение часов по темам и видам учебной работы
- •4. Содержание курса
- •1. Основные понятия, определения и теоремы теории вероятностей* Введение
- •1.1. Алгебра событий. Основые понятия теории множеств
- •1.2. Основные определения: испытание, событие. Классификация событий
- •1.3. Классическое определение вероятности. Свойства, вытекающие из этого определения
- •Значение вероятности
- •1.4. Основные теоремы теории вероятностей
- •1.5. Зависимые и независимые события
- •2. Формула полной вероятности и формула Бейеса
- •2.1. Формула полной вероятности
- •3. Случайные величины
- •3.1. Дискретные случайные величины
- •Ряд распределения случайной величины X
- •3.4. Ожидаемое среднее значение дискретной случайной величины
- •Вычисление математического ожидания числа рекламных
- •3.5. Свойства математического ожидания случайной дискретной величины
- •Возможные исходы лотереи
- •3.6. Ожидаемое среднее значение функции случайной величины
- •Ряд распределения числа месячных продаж
- •К вычислению среднего ожидаемого значения
- •3.7. Дисперсия дискретной случайной величины
- •К вычислению дисперсии случайной величины
- •3.9. Дисперсия линейной функции случайной величины
- •4. Законы распределения дискретных случайных величин
- •Формула Бернулли. Биномиальные вероятности
- •4.3. Биномиальный закон распределения
- •Биномиальное распределение
- •Биномиальное распределение X – числа гербов, появляющихся
- •Фрагмент таблиц ряда и функции биномиального распределения
- •Биномиальное распределение числа покупателей
- •Распределения
- •4.5. Распределение Пуассона
- •Закон распределения Пуассона
- •Сравнение вероятностей, полученных по формулам Бернулли и Пуассона
- •4.6. Гипергеометрическое распределение
- •Гипергеометрический закон распределения
- •Биномиальный закон распределения
- •Гипергеометрическое распределение
- •4.7. Производящая функция
- •4.8. Мультиномиальное распределение
- •4.9. Геометрическое распределение
- •5. Непрерывные случайные величины
- •6. Законы распределения непрерывных случайных величин
- •7. Закон больших чисел
- •7.1. Принцип практической уверенности. Формулировка закона больших чисел
- •7.2. Неравенства Маркова и Чебышева
- •Выражения (7.1–7.2) справедливы для дискретных и непрерывных случайных величин.
- •7.4. Теорема Бернулли
- •7.5. Теорема Пуассона
- •Контрольные задания по курсу теории вероятностей Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Вариант 16
- •Вариант 17
- •Вариант 18
- •Вариант 19
- •Вариант 20
- •Вариант 21
- •Вариант 22
- •Вариант 23
- •Вариант 24
- •Вариант 25
- •Вариант 26
- •Вариант 27
- •Вариант 28
- •Вариант 29
- •Вариант 30
- •Вариант 31
- •Вариант 32
- •Вариант 33
- •Вариант 34
- •Вариант 35
- •Вариант 36
- •Вариант 37
- •Вариант 38
- •Вариант 39
- •Вариант 40
- •Математическая статистика Теория вероятностей и математическая статистика – основной инструментарий для прикладной статистики
- •Дисперсией случайной величины х называется число dx , равное математическому ожиданию квадрата отклонения случайной величины от своего математического ожидания: . (1.4)
- •Контрольные вопросы и задачи
- •Статистическое оценивание
- •Интервальная оценка для генеральной доли
- •Контрольные вопросы и задачи
- •Тема 3. Статистическая проверка гипотез
- •Общая логическая схема статистического критерия.
- •Проверка гипотезы о значении генеральной средней
- •Проверка гипотезы о значении дисперсии генеральной совокупности
- •Сравнение наблюдаемой относительной частоты с гипотетической вероятностью появления события
- •Гипотеза об однородности рада вероятностей
- •Гипотезы о виде законов распределения генеральной совокупности
- •Контрольные вопросы и задачи
- •Тема 4. Методика статистического анализа количественных и качественных показателей
- •Контрольные вопросы и задачи
- •Тема 5. Многомерные статистические методы
- •Темы практических и семинарских занятий, тематических дискуссий
- •Задания для самостоятельной работы студентов
- •1.Методы анализов рядов динамики. Особенности моделирования рядов динамики с помощью корреляционного - регрессионного анализа
- •2. Понятие о закономерности распределения. Изучение формы распределения
- •3. Матрицы и таблицы сопряженности
- •4.Понятие о статистическом графике. Элементы статистического графика
- •5. Классификация видов графика: диаграммы сравнения, структурные диаграммы и диаграммы динамиков. Статистические карты
- •6. Условия типичности средних величин
- •7. Понятие малой выборки и методы расчета ее средней ошибки
- •8. Основные направления применения выборочного наблюдения в социально-экономических исследованиях
- •9. Взаимосвязи социально-экономических явлений и процессов, задачи их статического изучения.
- •10. Роль качественного анализа в исследовании связей
- •11. Основные статистические методы изучения связей в торговле и сфере услуг: метод параллельных данных, метод аналитических группировок, графический метод, балансовый метод.
- •12.Применение дисперсионного анализа в экономико-статистических исследованиях
- •13. Регрессионное уравнение как форма аналитического выражения статистических связей
- •14. Способы отбора факторных признаков при построении регрессионных моделей
- •15. Оценка результатов корреляционно-регрессионного анализа
- •7.Темы курсовых/контрольных работ/рефератов Варианты контрольных работ для студентов заочной формы обучения всех специальностей Вариант первый
- •Вариант второй
- •Вариант третий
- •Вариант четвертый
- •Вариант пятый
- •Вариант шестой
- •Вариант седьмой
- •Учебно-методическое обеспечение Литература:
- •16. Елисеева и.И., Юзбашев м.М. – Общая теория статистики. Учебник - м.: Финансы и статистика, 2005. Материально-техническое и информационное обеспечение дисциплин
Вариант 7
Задача 1. В ходе исследования потребительского рынка проводили опрос потребителей. В частности, один из вопросов касался сорта зубной пасты, которую использует потребитель. Если известно, что 14% населения используют сорт A, a 9% – сорт В, то чему равна вероятность того, что случайно выбранный человек будет использовать одну из двух паст. (Предполагается, что в данный момент человек использует только одну пасту).
Задача 2. В корпорации обсуждается маркетинг нового продукта, выпускаемого на рынок. Исполнительный директор корпорации желал бы, чтобы новый товар превосходил по своим характеристикам соответствующие товары конкурирующих фирм. Основываясь на предварительных оценках экспертов, он оценивает вероятность более высокой конкурентной способности нового товара по сравнению с аналогичными в 0,5; одинаковой – в 0,3, а вероятность того, что новый товар окажется хуже по качеству, – в 0,2. Опрос рынка показал, что новый товар более высокого качества и конкурентоспособен. Из предыдущего опыта проведения таких опросов следует, что если товар действительно конкурентоспособный, то предсказание такого же вывода имеет вероятность, равную 0,7. Если товар такой же, как другие аналогичные, то вероятность того, что опрос укажет на его превосходство, равна 0,4. И если товар более низкого качества, то вероятность того, что опрос укажет на товар более высокого качества, равна 0,2. С учетом результата опроса оцените вероятность того, что товар действительно конкурентоспособный?
Задача 3. Прибытие посетителей в банк подчиняется закону Пуассона. Ответьте на следующие вопросы, предполагая, что в среднем в банк каждые три минуты входит один посетитель:
Чему равна вероятность того, что в течение 1 минуты в банк войдет один посетитель?
Чему равна вероятность того что, по крайней мере, три посетителя войдут в банк а течение одной минуты?
Задача 4. Найдите стандартную нормально распределенную случайную величину, отсекающую площадь 0,575 (слева).
Задача 5. Для определения средней урожайности на площади 100000 га взято в выборку по одному гектару от каждого участка размером 100 га. Определите вероятность того, что средняя выборочная урожайность будет отличаться от действительной средней по всей площади не более чем на 0,5 ц, если дисперсия урожайности на отдельных участках (по 100 га) не превышает 2 ц.
Задача 6. Составьте задачу по изученному материалу курса теории вероятностей, используя предметную область экономики. Решите задачу и приведите пояснения.
Вариант 8
Задача 1. В ходе исследования потребительского рынка проводили опрос потребителей. В частности, один из вопросов касался сорта зубной пасты, которую использует потребитель. Известно, что 14% населения используют сорт A, a 9% – сорт В. Предположим, что вопрос о зубной пасте был сформулирован так: «Какие из двух видов зубной пасты Вы использовали в последний месяц?» Потребитель может ответить, что использовал более одного вида зубной пасты. Предположим, что приблизительно 1% людей использует 2 вида зубной пасты в течение месяца. Чему равна вероятность того, что случайно выбранный человек использовал, по крайней мере, одну из двух паст в течение месяца?
Задача 2. Медицинский тест на возможность вирусного заболевания дает следующие результаты:
Если проверяемый болен, то тест даст положительный результат с вероятностью 0,92.
Если проверяемый не болен, то тест может дать положительный результат с вероятностью 0,04.
Поскольку заболевание редкое, то ему подвержено только 0,1% населения. Предположим, что некоторому случайно выбранному человеку сделан анализ и получен положительный результат. Чему равна вероятность того, что человек действительно болен?
Задача 3. Некоторый ресторан славится хорошей кухней. Управляющий ресторана хвастает, что в субботний вечер в течение получаса подходит до 15 групп посетителей.
Чему равна вероятность того, что в течение 5 минут не подойдет ни одного посетителя?
Чему равна вероятность того, что в течение 10 минут подойдет восемь групп посетителей?
Чему равна вероятность того, что три или более групп посетителей прибудут в ресторан в течение 10-минутного промежутка времени?
Задача 4. Найдите Z такое, чтобы Р(Z>z)=0,28.
Задача 5. Определите с вероятностью (надежностью) не менее 0,8, какою может быть максимальное отклонение выборочной средней урожайности от средней урожайности по всей площади, составляющей 10000 га, если с каждого участка размером 200 га в выборку было взято по одному гектару, а максимальная дисперсия на отдельных участках не превышает 2,5 ц.
Задача 6. Составьте задачу по изученному материалу курса теории вероятностей, используя предметную область экономики. Решите задачу и приведите пояснения.