
- •Авторы-составители:
- •1.Цели и задачи дисциплины
- •1). Цель, задачи, структура дисциплины и ее место в учебном процессе.
- •Требования к уровню освоения содержания дисциплины
- •Объем дисциплины Объем дисциплины и виды учебной работы Распределение часов по темам и видам учебной работы
- •4. Содержание курса
- •1. Основные понятия, определения и теоремы теории вероятностей* Введение
- •1.1. Алгебра событий. Основые понятия теории множеств
- •1.2. Основные определения: испытание, событие. Классификация событий
- •1.3. Классическое определение вероятности. Свойства, вытекающие из этого определения
- •Значение вероятности
- •1.4. Основные теоремы теории вероятностей
- •1.5. Зависимые и независимые события
- •2. Формула полной вероятности и формула Бейеса
- •2.1. Формула полной вероятности
- •3. Случайные величины
- •3.1. Дискретные случайные величины
- •Ряд распределения случайной величины X
- •3.4. Ожидаемое среднее значение дискретной случайной величины
- •Вычисление математического ожидания числа рекламных
- •3.5. Свойства математического ожидания случайной дискретной величины
- •Возможные исходы лотереи
- •3.6. Ожидаемое среднее значение функции случайной величины
- •Ряд распределения числа месячных продаж
- •К вычислению среднего ожидаемого значения
- •3.7. Дисперсия дискретной случайной величины
- •К вычислению дисперсии случайной величины
- •3.9. Дисперсия линейной функции случайной величины
- •4. Законы распределения дискретных случайных величин
- •Формула Бернулли. Биномиальные вероятности
- •4.3. Биномиальный закон распределения
- •Биномиальное распределение
- •Биномиальное распределение X – числа гербов, появляющихся
- •Фрагмент таблиц ряда и функции биномиального распределения
- •Биномиальное распределение числа покупателей
- •Распределения
- •4.5. Распределение Пуассона
- •Закон распределения Пуассона
- •Сравнение вероятностей, полученных по формулам Бернулли и Пуассона
- •4.6. Гипергеометрическое распределение
- •Гипергеометрический закон распределения
- •Биномиальный закон распределения
- •Гипергеометрическое распределение
- •4.7. Производящая функция
- •4.8. Мультиномиальное распределение
- •4.9. Геометрическое распределение
- •5. Непрерывные случайные величины
- •6. Законы распределения непрерывных случайных величин
- •7. Закон больших чисел
- •7.1. Принцип практической уверенности. Формулировка закона больших чисел
- •7.2. Неравенства Маркова и Чебышева
- •Выражения (7.1–7.2) справедливы для дискретных и непрерывных случайных величин.
- •7.4. Теорема Бернулли
- •7.5. Теорема Пуассона
- •Контрольные задания по курсу теории вероятностей Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Вариант 16
- •Вариант 17
- •Вариант 18
- •Вариант 19
- •Вариант 20
- •Вариант 21
- •Вариант 22
- •Вариант 23
- •Вариант 24
- •Вариант 25
- •Вариант 26
- •Вариант 27
- •Вариант 28
- •Вариант 29
- •Вариант 30
- •Вариант 31
- •Вариант 32
- •Вариант 33
- •Вариант 34
- •Вариант 35
- •Вариант 36
- •Вариант 37
- •Вариант 38
- •Вариант 39
- •Вариант 40
- •Математическая статистика Теория вероятностей и математическая статистика – основной инструментарий для прикладной статистики
- •Дисперсией случайной величины х называется число dx , равное математическому ожиданию квадрата отклонения случайной величины от своего математического ожидания: . (1.4)
- •Контрольные вопросы и задачи
- •Статистическое оценивание
- •Интервальная оценка для генеральной доли
- •Контрольные вопросы и задачи
- •Тема 3. Статистическая проверка гипотез
- •Общая логическая схема статистического критерия.
- •Проверка гипотезы о значении генеральной средней
- •Проверка гипотезы о значении дисперсии генеральной совокупности
- •Сравнение наблюдаемой относительной частоты с гипотетической вероятностью появления события
- •Гипотеза об однородности рада вероятностей
- •Гипотезы о виде законов распределения генеральной совокупности
- •Контрольные вопросы и задачи
- •Тема 4. Методика статистического анализа количественных и качественных показателей
- •Контрольные вопросы и задачи
- •Тема 5. Многомерные статистические методы
- •Темы практических и семинарских занятий, тематических дискуссий
- •Задания для самостоятельной работы студентов
- •1.Методы анализов рядов динамики. Особенности моделирования рядов динамики с помощью корреляционного - регрессионного анализа
- •2. Понятие о закономерности распределения. Изучение формы распределения
- •3. Матрицы и таблицы сопряженности
- •4.Понятие о статистическом графике. Элементы статистического графика
- •5. Классификация видов графика: диаграммы сравнения, структурные диаграммы и диаграммы динамиков. Статистические карты
- •6. Условия типичности средних величин
- •7. Понятие малой выборки и методы расчета ее средней ошибки
- •8. Основные направления применения выборочного наблюдения в социально-экономических исследованиях
- •9. Взаимосвязи социально-экономических явлений и процессов, задачи их статического изучения.
- •10. Роль качественного анализа в исследовании связей
- •11. Основные статистические методы изучения связей в торговле и сфере услуг: метод параллельных данных, метод аналитических группировок, графический метод, балансовый метод.
- •12.Применение дисперсионного анализа в экономико-статистических исследованиях
- •13. Регрессионное уравнение как форма аналитического выражения статистических связей
- •14. Способы отбора факторных признаков при построении регрессионных моделей
- •15. Оценка результатов корреляционно-регрессионного анализа
- •7.Темы курсовых/контрольных работ/рефератов Варианты контрольных работ для студентов заочной формы обучения всех специальностей Вариант первый
- •Вариант второй
- •Вариант третий
- •Вариант четвертый
- •Вариант пятый
- •Вариант шестой
- •Вариант седьмой
- •Учебно-методическое обеспечение Литература:
- •16. Елисеева и.И., Юзбашев м.М. – Общая теория статистики. Учебник - м.: Финансы и статистика, 2005. Материально-техническое и информационное обеспечение дисциплин
Контрольные задания по курсу теории вероятностей Вариант 1
Задача 1. Уличный торговец предлагает прохожим иллюстрированную книгу. Из предыдущего опыта ему известно, что в среднем один из 65 прохожих, которым он предлагает книгу, покупает ее. В течение некоторого промежутка времени он предложил книгу 20 прохожим. Чему равна вероятность того, что он продаст хотя бы одну книгу? Прокомментируйте предположения, которые вы использовали при решении задачи.
Задача 2. Вероятность того, что клиент банка не вернет заем в период экономического роста, равна 0,04, в период экономического кризиса – 0,13. Предположим, что вероятность того, что начнется период экономического роста, равна 0,65. Чему равна вероятность того, что случайно выбранный клиент банка не вернет полученный кредит?
Задача 3. Строительная инвестиционная компания в настоящий момент продает акции по 16 условных денежных единиц за штуку. Инвестор планирует покупку пакета акций и предполагает хранение их в течение года. Пусть X – случайная величина, означающая цену одной акции спустя год. Ряд распределения дан в таблице:
-
Цена акции (х)
Р(Х)
16
0,35
17
0,25
18
0,25
19
0,10
20
0,05
Показать, что заданное распределение обладает всеми свойствами ряда распределения.
Чему равно ожидаемое среднее значение цены акции спустя один год?
Чему равен ожидаемый средний выигрыш от акции, спустя год? Чему равен процент возврата инвестиций, отражаемый этим ожидаемым значением?
Определите дисперсию цены акции спустя год.
Другая акция с одинаковым ожидаемым значением возврата инвестиций имеет дисперсию, равную 3. Какая из акций лучше в смысле минимизации риска или неопределенности, ассоциируемой с инвестициями? Объясните.
Задача 4. Найдите следующие вероятности для нормального стандартного распределения:
а) Р(-1<Z<1);
б)P(-1,96<Z<1,96);
в)P(-2,33<Z<2,33);
г) Р(Z<2,58);
д)P(-3<Z<3).
Задача 5. Среднее значение расхода воды в населенном пункте составляет 50000 л в день. Оцените вероятность того, что в этом населенном пункте расход воды не будет превышать 120000 л в день.
Задача 6. Составьте задачу по изученному материалу курса теории вероятностей, используя предметную область экономики. Решите задачу и приведите пояснения.
Вариант 2
Задача 1. Предположим, что 25% населения живет в области, охваченной коммерческим телевидением, рекламирующим две новые модели автомобилей фирмы; 34% населения охвачено радиорекламой. Также известно, что 10% населения слушает и радио и телерекламу. Если случайно отобрать человека, живущего в данной области, то чему будет равна вероятность того, что он знаком, по крайней мере, хотя бы с одной из рекламных передач фирмы?
Задача 2. При слиянии акционерного капитала двух фирм аналитики фирмы, получающей контрольный пакет акций, полагают, что сделка принесет успех с вероятностью, равной 0,65, если Председатель совета директоров поглощаемой фирмы выйдет в отставку; если он откажется, то вероятность успеха равна 0,3. Предполагается, что вероятность ухода в отставку председателя составляет 0,7. Чему равна вероятность успеха сделки?
Задача 3. Некоторое предприятие планирует реконструкцию и расширение производства для выпуска новой продукции. Руководство предприятия должно определить стратегию реконструкции и выбрать один из двух проектов, предусматривающих большие и умеренные капитальные вложения. Неопределенность заключается в том, что спрос на новую продукцию, которую собирается выпускать предприятие, неизвестен. Будущий спрос может быть низким, умеренным и высоким. Вероятности спроса оцениваются как 0,20, 0,50 и 0,30 соответственно. Пусть X означает ежегодный доход 1000 условных денежных единиц. Предприятие планирует следующий доход для проектов с большими и умеренными капитальными вложениями:
-
Доход при значительных вложениях
Доход при умеренных вложениях
Спрос, x
P(x)
Спрос, x
P(x)
0
0,20
50
0,20
100
0,50
150
0,50
300
0,30
200
0,30
Вычислите ожидаемое среднее значение дохода при альтернативных типах реконструкции предприятия. Какое решение предпочтительнее для максимизации ожидаемого дохода?
Вычислите дисперсию дохода для двух альтернативных проектов. Какое решение Вы предпочтете для минимизации риска и неопределенности?
Задача 4. Найдите вероятность того, что стандартная нормально распределенная случайная величина будет иметь значения между -2 и 1.
Задача 5. Средняя масса клубня картофеля равна 100 г. Применяя неравенство Маркова, оцените вероятность того, что наудачу взятый клубень имеет массу не более 300 г.
Задача 6. Составьте задачу по изученному материалу курса теории вероятностей, используя предметную область экономики. Решите задачу и приведите пояснения.