
- •Авторы-составители:
- •1.Цели и задачи дисциплины
- •1). Цель, задачи, структура дисциплины и ее место в учебном процессе.
- •Требования к уровню освоения содержания дисциплины
- •Объем дисциплины Объем дисциплины и виды учебной работы Распределение часов по темам и видам учебной работы
- •4. Содержание курса
- •1. Основные понятия, определения и теоремы теории вероятностей* Введение
- •1.1. Алгебра событий. Основые понятия теории множеств
- •1.2. Основные определения: испытание, событие. Классификация событий
- •1.3. Классическое определение вероятности. Свойства, вытекающие из этого определения
- •Значение вероятности
- •1.4. Основные теоремы теории вероятностей
- •1.5. Зависимые и независимые события
- •2. Формула полной вероятности и формула Бейеса
- •2.1. Формула полной вероятности
- •3. Случайные величины
- •3.1. Дискретные случайные величины
- •Ряд распределения случайной величины X
- •3.4. Ожидаемое среднее значение дискретной случайной величины
- •Вычисление математического ожидания числа рекламных
- •3.5. Свойства математического ожидания случайной дискретной величины
- •Возможные исходы лотереи
- •3.6. Ожидаемое среднее значение функции случайной величины
- •Ряд распределения числа месячных продаж
- •К вычислению среднего ожидаемого значения
- •3.7. Дисперсия дискретной случайной величины
- •К вычислению дисперсии случайной величины
- •3.9. Дисперсия линейной функции случайной величины
- •4. Законы распределения дискретных случайных величин
- •Формула Бернулли. Биномиальные вероятности
- •4.3. Биномиальный закон распределения
- •Биномиальное распределение
- •Биномиальное распределение X – числа гербов, появляющихся
- •Фрагмент таблиц ряда и функции биномиального распределения
- •Биномиальное распределение числа покупателей
- •Распределения
- •4.5. Распределение Пуассона
- •Закон распределения Пуассона
- •Сравнение вероятностей, полученных по формулам Бернулли и Пуассона
- •4.6. Гипергеометрическое распределение
- •Гипергеометрический закон распределения
- •Биномиальный закон распределения
- •Гипергеометрическое распределение
- •4.7. Производящая функция
- •4.8. Мультиномиальное распределение
- •4.9. Геометрическое распределение
- •5. Непрерывные случайные величины
- •6. Законы распределения непрерывных случайных величин
- •7. Закон больших чисел
- •7.1. Принцип практической уверенности. Формулировка закона больших чисел
- •7.2. Неравенства Маркова и Чебышева
- •Выражения (7.1–7.2) справедливы для дискретных и непрерывных случайных величин.
- •7.4. Теорема Бернулли
- •7.5. Теорема Пуассона
- •Контрольные задания по курсу теории вероятностей Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Вариант 16
- •Вариант 17
- •Вариант 18
- •Вариант 19
- •Вариант 20
- •Вариант 21
- •Вариант 22
- •Вариант 23
- •Вариант 24
- •Вариант 25
- •Вариант 26
- •Вариант 27
- •Вариант 28
- •Вариант 29
- •Вариант 30
- •Вариант 31
- •Вариант 32
- •Вариант 33
- •Вариант 34
- •Вариант 35
- •Вариант 36
- •Вариант 37
- •Вариант 38
- •Вариант 39
- •Вариант 40
- •Математическая статистика Теория вероятностей и математическая статистика – основной инструментарий для прикладной статистики
- •Дисперсией случайной величины х называется число dx , равное математическому ожиданию квадрата отклонения случайной величины от своего математического ожидания: . (1.4)
- •Контрольные вопросы и задачи
- •Статистическое оценивание
- •Интервальная оценка для генеральной доли
- •Контрольные вопросы и задачи
- •Тема 3. Статистическая проверка гипотез
- •Общая логическая схема статистического критерия.
- •Проверка гипотезы о значении генеральной средней
- •Проверка гипотезы о значении дисперсии генеральной совокупности
- •Сравнение наблюдаемой относительной частоты с гипотетической вероятностью появления события
- •Гипотеза об однородности рада вероятностей
- •Гипотезы о виде законов распределения генеральной совокупности
- •Контрольные вопросы и задачи
- •Тема 4. Методика статистического анализа количественных и качественных показателей
- •Контрольные вопросы и задачи
- •Тема 5. Многомерные статистические методы
- •Темы практических и семинарских занятий, тематических дискуссий
- •Задания для самостоятельной работы студентов
- •1.Методы анализов рядов динамики. Особенности моделирования рядов динамики с помощью корреляционного - регрессионного анализа
- •2. Понятие о закономерности распределения. Изучение формы распределения
- •3. Матрицы и таблицы сопряженности
- •4.Понятие о статистическом графике. Элементы статистического графика
- •5. Классификация видов графика: диаграммы сравнения, структурные диаграммы и диаграммы динамиков. Статистические карты
- •6. Условия типичности средних величин
- •7. Понятие малой выборки и методы расчета ее средней ошибки
- •8. Основные направления применения выборочного наблюдения в социально-экономических исследованиях
- •9. Взаимосвязи социально-экономических явлений и процессов, задачи их статического изучения.
- •10. Роль качественного анализа в исследовании связей
- •11. Основные статистические методы изучения связей в торговле и сфере услуг: метод параллельных данных, метод аналитических группировок, графический метод, балансовый метод.
- •12.Применение дисперсионного анализа в экономико-статистических исследованиях
- •13. Регрессионное уравнение как форма аналитического выражения статистических связей
- •14. Способы отбора факторных признаков при построении регрессионных моделей
- •15. Оценка результатов корреляционно-регрессионного анализа
- •7.Темы курсовых/контрольных работ/рефератов Варианты контрольных работ для студентов заочной формы обучения всех специальностей Вариант первый
- •Вариант второй
- •Вариант третий
- •Вариант четвертый
- •Вариант пятый
- •Вариант шестой
- •Вариант седьмой
- •Учебно-методическое обеспечение Литература:
- •16. Елисеева и.И., Юзбашев м.М. – Общая теория статистики. Учебник - м.: Финансы и статистика, 2005. Материально-техническое и информационное обеспечение дисциплин
Формула Бернулли. Биномиальные вероятности
Вычислим вероятности значений случайной величины, подчиняющиеся закону биномиального распределения.
При четырех подбрасываниях монеты случайная величина X, определяющая число выпадений герба, принимает возможные значения Xi = 0; 1; 2; 3; 4. Рассмотрим определенное событие, когда X = 2. Это событие состоит в том, что при четырех подбрасываниях монеты 2 раза выпадет герб. Определим вероятность Р(Х = 2). Для этого подсчитаем, сколькими способами может осуществиться данное подбрасывание.
При четырех бросаниях монеты герб появится два раза в одной из следующих шести последовательностей: ГГЦЦ, ГЦГЦ, ГЦЦГ, ЦГГЦ, ЦГЦГ, ЦЦГГ. Исходя из независимости четырех испытаний вероятность определенной последовательности, скажем ЦЦГГ, есть ppqq. Порядок появления цифры или герба не влияет на вероятность. Вероятность р2q2 – вероятность для любой из шести перечисленных комбинаций. Поскольку все шесть возможных комбинаций ведут к событию Х = 2, то умножим результат на шесть и получим 6р2q2. Для идеальной монеты р = q = 0,5; отсюда P(X = 2) = 6(0,5)4 = 0,375. Точно так же можно вычислить другие вероятности Р(Х = 0), Р(Х = 1), Р(Х = 3), Р(Х = 4). процедуру вычисления вероятности появлений некоторого события точно т раз в n последовательных испытаниях, удовлетворяющую условиям повторных испытаний, удобнее обобщить при помощи специальной формулы. Отметим следующее
1. Вероятность любой заданной последовательности, в которой событие появляется т раз и в n испытаниях с вероятностью успеха в каждом отдельном испытании р и с вероятностью неуспеха q, равна pmqn–m. Заметим, что для опыта с подбрасыванием монеты при р = q = = 0,5, n = 4 и т = 2, получим P(X = 2) = (0,5)2(0,5)2 = (0,5)4.
2. Число различных комбинаций в испытаниях, в результате которых наступит точно т успехов, равно числу сочетаний из n элементов по т элементов в каждом Сnm = Anm/Pm = n!/[m!(n–m)!].
Для примера 4.1 с подбрасыванием монеты Сnm = 4∙3/(1∙2) = 6. Этот результат совпадает с полученным путем непосредственного подсчета.
3. Поскольку существует Сnm комбинаций и каждая комбинация имеет вероятность рmqn-m, то вероятность т успехов в n испытаниях есть результат двух описанных выше действий. Будем использовать символ Рп,т для обозначения вероятности Р(Х = т) в n испытаниях с вероятностью успеха в каждом отдельном испытании р:
Р(Х
= т)
=
Рп,т
=
Сnmрmqn-m
=
(4.1)
где q = 1– p; n – число испытаний; m – число успешных испытаний, а формула (4.1) называется формулой Бернулли.
4.3. Биномиальный закон распределения
В формуле (4.1) т может принимать значения от 0 до n. Подставим m = 0; 1; 2; ...; n в формулу (4.1):
(q + p)п = qn + nрqn–1 + Сn2р2qп–2 +...+ Сnk рkqп–k +…+ nрn–1q + рn. (4.2)
Так как (q + р) = 1, то Рn,0 + Рп,1 +...+ Рп,m = 1 (табл. 4.1).
Таблица 4.1
Биномиальное распределение
-
Число успехов, m
Вероятность, P(n, m)
0
Сn0 р0qп
1
Сn1 р1qп–1
2
Сn2 р2qп--2
3
Сn3 р3qп–3
…
…
k
Сnk рkqп–k
…
…
n
Сnn рnq0
1,00
В табл. 4.2 представлены биномиальные вероятности случайной величины X для примера 4.1, рассчитанные при помощи формулы (4.1).
Таблица 4.2