
- •Авторы-составители:
- •1.Цели и задачи дисциплины
- •1). Цель, задачи, структура дисциплины и ее место в учебном процессе.
- •Требования к уровню освоения содержания дисциплины
- •Объем дисциплины Объем дисциплины и виды учебной работы Распределение часов по темам и видам учебной работы
- •4. Содержание курса
- •1. Основные понятия, определения и теоремы теории вероятностей* Введение
- •1.1. Алгебра событий. Основые понятия теории множеств
- •1.2. Основные определения: испытание, событие. Классификация событий
- •1.3. Классическое определение вероятности. Свойства, вытекающие из этого определения
- •Значение вероятности
- •1.4. Основные теоремы теории вероятностей
- •1.5. Зависимые и независимые события
- •2. Формула полной вероятности и формула Бейеса
- •2.1. Формула полной вероятности
- •3. Случайные величины
- •3.1. Дискретные случайные величины
- •Ряд распределения случайной величины X
- •3.4. Ожидаемое среднее значение дискретной случайной величины
- •Вычисление математического ожидания числа рекламных
- •3.5. Свойства математического ожидания случайной дискретной величины
- •Возможные исходы лотереи
- •3.6. Ожидаемое среднее значение функции случайной величины
- •Ряд распределения числа месячных продаж
- •К вычислению среднего ожидаемого значения
- •3.7. Дисперсия дискретной случайной величины
- •К вычислению дисперсии случайной величины
- •3.9. Дисперсия линейной функции случайной величины
- •4. Законы распределения дискретных случайных величин
- •Формула Бернулли. Биномиальные вероятности
- •4.3. Биномиальный закон распределения
- •Биномиальное распределение
- •Биномиальное распределение X – числа гербов, появляющихся
- •Фрагмент таблиц ряда и функции биномиального распределения
- •Биномиальное распределение числа покупателей
- •Распределения
- •4.5. Распределение Пуассона
- •Закон распределения Пуассона
- •Сравнение вероятностей, полученных по формулам Бернулли и Пуассона
- •4.6. Гипергеометрическое распределение
- •Гипергеометрический закон распределения
- •Биномиальный закон распределения
- •Гипергеометрическое распределение
- •4.7. Производящая функция
- •4.8. Мультиномиальное распределение
- •4.9. Геометрическое распределение
- •5. Непрерывные случайные величины
- •6. Законы распределения непрерывных случайных величин
- •7. Закон больших чисел
- •7.1. Принцип практической уверенности. Формулировка закона больших чисел
- •7.2. Неравенства Маркова и Чебышева
- •Выражения (7.1–7.2) справедливы для дискретных и непрерывных случайных величин.
- •7.4. Теорема Бернулли
- •7.5. Теорема Пуассона
- •Контрольные задания по курсу теории вероятностей Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Вариант 16
- •Вариант 17
- •Вариант 18
- •Вариант 19
- •Вариант 20
- •Вариант 21
- •Вариант 22
- •Вариант 23
- •Вариант 24
- •Вариант 25
- •Вариант 26
- •Вариант 27
- •Вариант 28
- •Вариант 29
- •Вариант 30
- •Вариант 31
- •Вариант 32
- •Вариант 33
- •Вариант 34
- •Вариант 35
- •Вариант 36
- •Вариант 37
- •Вариант 38
- •Вариант 39
- •Вариант 40
- •Математическая статистика Теория вероятностей и математическая статистика – основной инструментарий для прикладной статистики
- •Дисперсией случайной величины х называется число dx , равное математическому ожиданию квадрата отклонения случайной величины от своего математического ожидания: . (1.4)
- •Контрольные вопросы и задачи
- •Статистическое оценивание
- •Интервальная оценка для генеральной доли
- •Контрольные вопросы и задачи
- •Тема 3. Статистическая проверка гипотез
- •Общая логическая схема статистического критерия.
- •Проверка гипотезы о значении генеральной средней
- •Проверка гипотезы о значении дисперсии генеральной совокупности
- •Сравнение наблюдаемой относительной частоты с гипотетической вероятностью появления события
- •Гипотеза об однородности рада вероятностей
- •Гипотезы о виде законов распределения генеральной совокупности
- •Контрольные вопросы и задачи
- •Тема 4. Методика статистического анализа количественных и качественных показателей
- •Контрольные вопросы и задачи
- •Тема 5. Многомерные статистические методы
- •Темы практических и семинарских занятий, тематических дискуссий
- •Задания для самостоятельной работы студентов
- •1.Методы анализов рядов динамики. Особенности моделирования рядов динамики с помощью корреляционного - регрессионного анализа
- •2. Понятие о закономерности распределения. Изучение формы распределения
- •3. Матрицы и таблицы сопряженности
- •4.Понятие о статистическом графике. Элементы статистического графика
- •5. Классификация видов графика: диаграммы сравнения, структурные диаграммы и диаграммы динамиков. Статистические карты
- •6. Условия типичности средних величин
- •7. Понятие малой выборки и методы расчета ее средней ошибки
- •8. Основные направления применения выборочного наблюдения в социально-экономических исследованиях
- •9. Взаимосвязи социально-экономических явлений и процессов, задачи их статического изучения.
- •10. Роль качественного анализа в исследовании связей
- •11. Основные статистические методы изучения связей в торговле и сфере услуг: метод параллельных данных, метод аналитических группировок, графический метод, балансовый метод.
- •12.Применение дисперсионного анализа в экономико-статистических исследованиях
- •13. Регрессионное уравнение как форма аналитического выражения статистических связей
- •14. Способы отбора факторных признаков при построении регрессионных моделей
- •15. Оценка результатов корреляционно-регрессионного анализа
- •7.Темы курсовых/контрольных работ/рефератов Варианты контрольных работ для студентов заочной формы обучения всех специальностей Вариант первый
- •Вариант второй
- •Вариант третий
- •Вариант четвертый
- •Вариант пятый
- •Вариант шестой
- •Вариант седьмой
- •Учебно-методическое обеспечение Литература:
- •16. Елисеева и.И., Юзбашев м.М. – Общая теория статистики. Учебник - м.: Финансы и статистика, 2005. Материально-техническое и информационное обеспечение дисциплин
К вычислению дисперсии случайной величины
x |
P(x) |
хР(х) |
х2Р(х) |
0 1 2 3 4 5 |
0,1 0,2 0,3 0,2 0,1 0,1 |
0,0 0,2 0,6 0,6 0,4 0,5 |
0,0 0,2 1,2 1,8 1,6 2,5 |
|
1,0 |
М(X) = 2,3 |
М(X2) = 7,3 |
Чтобы получить дисперсию X, вычислим разность M(X2) – [М(Х)]2:
D(X) = M(X2) – [М(Х)]2 = 7.3 – (2,3)2 = 2,01.
Результат совпал с полученным при помощи формулы (3.8).
Среднее квадратическое отклонение (стандартное) отклонение дискретной случайной величины равно корню квадратному из дисперсии
.
(3.12)
Для
примера 3.1
среднее
квадратическое отклонение
В чем смысл дисперсии и среднего квадратического отклонения? Как можно интерпретировать их значения? По определению σ2 – средний квадрат отклонения значений случайной величины от математического ожидания. Отсюда следует, что это мера рассеяния всех возможных значений случайной величины относительно среднего ожидаемого значения. Дисперсия характеризует колеблемость, изменчивость случайной величины: чем больше вариация, тем дальше от средней находятся возможные значения случайной величины. Для содержательной интерпретации зачастую полезно применять значение, которое дает корень квадратный из дисперсии – среднее квадратическое отклонение (стандартное отклонение). Если сравнивают две случайные величины, то та из них, которая имеет большую дисперсию и среднее квадратическое отклонение, более вариабельна. Риск, ассоциируемый с инвестициями, часто измеряют стандартным отклонением возврата инвестиций. Если сравниваются два типа инвестиций с одинаковой ожидаемой средней возврата, то инвестиции с более высоким средним квадратическим отклонением считаются более рискованными (хотя более высокое стандартное отклонение предполагает более вариабельный возврат с обеих сторон – как ниже, так и выше средней).
3.9. Дисперсия линейной функции случайной величины
Для случайной величины, заданной линейной функцией аХ+b, имеем
D(a∙X + b) = a2∙D(X) = a2∙σ2. (3.13)
По
формуле (3.13) найдем дисперсию ожидаемого
дохода для
примера 3.5.
Доход
задан функцией 2Х
–
8000. Находим M(X2)
=
= 50002∙0,2
+ 60002∙0,3
+ 70002∙0,2
+ 80002∙0,2
+ 90002∙0,1
= 4 650 000. М(Х)
= 6700. Отсюда дисперсия D(X)
= M(X2)
– [М(Х)]2
= 46 500 000 –
– 67002
= 1 610 000. Используя формулу (3.13), вычислим
дисперсию ожидаемого дохода: D(Х)
= σ2
= 22∙1
610 000 = 6 440 000. Среднее квадратическое
отклонение дохода равно
4. Законы распределения дискретных случайных величин
4.1. Схема повторных испытаний.
Биномиальное распределение
Пример 4.1. Монета подбрасывается 4 раза, пусть X – число появившихся гербов.
Пример 4.2. Известно, что в определенном городе 30 % горожан предпочитают добираться на работу личным автотранспортом. Случайно выбраны 8 человек. Пусть Y – число людей в выборке, предпочитающих личный автотранспорт.
Пример 4.3. Известно, что 15 % деталей, произведенных автоматом, – бракованные. В порядке случайного отбора взято 12 деталей. Пусть Z – число дефектных деталей.
В примерах X, Y, Z – дискретные случайные величин, подчиняющиеся биномиальному распределению. Биномиальное распределение базируется на эксперименте, состоящем в последовательности испытаний Бернулли (схеме повторных испытаний).
Испытания Бернулли – это последовательность n идентичных испытаний, удовлетворяющих следующим условиям:
1. Каждое испытание имеет два исхода: успех и неуспех – взаимно несовместные и противоположные события.
2 Вероятность успеха р остается постоянной от испытания к испытанию. Вероятность неуспеха q = 1–р.
3. Все п испытаний – независимы. Вероятность наступления события в любом из испытаний не зависит от результатов других испытаний.
Успех и неуспех – статистические термины. Например, когда имеют дело с производственным процессом, то исход испытания «деталь дефектная» определяют как успех. Успех относится к появлению определенного события – «деталь дефектная», а неуспех относится к непоявлению события. Определим случайную величину как биномиальную, если для нее мы рассчитываем число успехов и неуспехов в последовательности п испытаний Бернулли.
Случайная величина, для которой вычисляется число успехов в n повторных испытаниях, где р – вероятность успеха в любом из заданных испытаний, a q = (1–р) – соответствующая вероятность неуспеха, подчиняется закону биномиального распределения с параметрами n и р.
В примере 4.1 п = 4, р = 0,5 – параметры биномиального распределения случайной величины X. Последовательные подбрасывания монеты – независимые эксперименты; исходы – «цифра» или «герб» (успех – неуспех) и вероятности их выпадения постоянны от испытания к испытанию.
В примере 4.2 п = 8, р = 0,3 – параметры биномиального распределения случайной величины Y. Заметим, что случайная выборка из большой генеральной совокупности предполагает независимость испытаний. Мы полагаем, что число людей в городе (генеральная совокупность) намного больше, чем число испытаний, и случайный отбор небольшого числа людей не влияет на ту часть оставшихся горожан, которые предпочитают добираться до работы на личном транспорте (события «предпочитают личный транспорт» для любых отобранных горожан – независимы). Если в генеральной совокупности только 10 человек, трое из которых предпочитают личный транспорт, то ситуация меняется. Вероятность того, что следующий отобранный горожанин предпочтет также личный транспорт, составит уже только 2/9 0,22 или 3/9 0,33 в зависимости от того, предпочитает ли он личный транспорт или нет. В этом случае условия 2 и 3 испытаний Бернулли будут нарушены и Y не будет биномиальной случайной величиной. Чем больше объем генеральной совокупности в сравнении с выборкой, тем менее серьезно нарушение условий 2 и 3. На практике пользуются правилом: если N/п > 10 (N – объем генеральной совокупности, n – объем выборки), то можно предположить независимость исходов.
В примере 4.3 Z подчиняется биномиальному распределению с параметрами n = 12, р = 0,15. Полагаем, что автомат произвел большое количество деталей, выборка выполнена случайным образом из большого числа сходных деталей по наличию или отсутствию дефектов.