
- •Ботаника с основами фитоценологии.
- •4. Характерные признаки высших растений. Ткани высших растений, взаимосвязь структуры и функции. Принципы классификаций тканей.
- •7. Разнообразие анатомической структуры стебля однодольных и двудольных растений.
- •8. Особенности жизненного цикла высших растений: гаметофитная и спорофитная линии. Взаимоотношение спорофита и гаметофита у моховидных, высших споровых и семенных растений.
- •9. Семя как орган размножения и расселения растений. Строение семян голосеменных и покрытосеменных растений.
- •10. Класс хвойные, геологическая история, распространение в современную эпоху, аспекты практического использования. Особенности размножения.
- •11. Общая характеристика покрытосеменных растений, их роль в сложении растительного покрова. Процессы размножения, протекающие в цветке.
- •12. Деление покрытосеменных растений на классы. Сравнительная характеристика однодольных и двудольных растений. Важнейшие семейства.
- •13. Характерные признаки фитоценоза: видовое богатство, флористический и экобиоморфный состав, вертикальная и горизонтальная структура, популяционный состав, биологическая продукция и фитомасса.
- •Зоология.
- •1. Тип Инфузории. Особенности строения и размножения инфузорий как наиболее высокоорганизованных простейших. Отряды инфузорий. Значение. Ресничный и ядерный аппарат. Особенности конъюгации.
- •3. Тип Круглые черви. Класс Нематоды. Особенности организации нематод. Образ жизни и распространение. Размножение и развитие. Паразитические нематоды. Способы заражения. Профилактика гельминтов.
- •5. Тип Моллюски. Класс Брюхоногие моллюски. Особенности строения моллюсков. Развитие асимметрии. Размножение и развитие гастропод. Распространение.
- •8. Основные этапы филогенетического развития позвоночных животных. Эволюционная связь классов подтипа Позвоночные. Основные ароморфозы, характерные каждому классу подтипа Позвоночные.
- •9. Геологические и биологические предпосылки выхода позвоночных животных на сушу. Особенности организации земноводных.
- •5 Отделов мозга: передний, промежуточный, средний, мозжечок, продолговатый.
- •11. Система класса Птицы. Особенности организации птиц. Сложное поведение птиц. Забота о потомстве. Миграции и способы их изучения.
- •12. Размножение птиц. Взаимоотношения полов, гнездостроение, насиживание и инкубация. Птенцовость и выводковость.
- •13. Систематика класса Млекопитающие. Особенности организации млекопитающих. Их размножение и развитие. Характеристика отрядов насекомоядных, приматов, грызунов, парнокопытных. Значение.
- •14. Пойкилотермия и гомойотермия. Физиологические и поведенческие способы регуляции температуры тела. Способы животных переживать периоды года с низкой температурой.
- •Физиология растений.
- •1. Общая характеристика процесса фотосинтеза. Фотосинтетические пигменты: классификация, физико-химические свойства, значение.
- •3. Фотохимическая фаза фотосинтеза: фотосистемы и этц. Накопление «ассимиляционной силы» в хлоропласте.
- •6. Цикл Кребса и дыхательная этц: химизм, энергетика, физиологическое значение.
- •7. Понятие о метаболической энергии и макроэргических соединениях. Роль атф в клеточном метаболизме. Механизмы субстратного и сопряженного синтеза атф.
- •Микробиология.
- •Анатомия и физиология человека.
- •2. Дыхательная система человека. Этапы дыхания. Показатели вентиляции легких. Газообмен в легких и тканях. Транспорт дыхательных газов. Кривая диссоциации оксигемоглобина. Регуляция дыхания.
- •5. Морфологические и функциональные особенности сердечной мышцы. Внутрисердечные и внесердечные механизмы регуляции работы сердца.
- •6. Структура и функции мышц. Структура мышечного волокна. Механизм и энергетика мышечного сокращения. Виды и режимы мышечных сокращений.
- •7. Эндокринная система организма. Гормоны, их роль в организме. Роль гипоталамо-гипофизной системы в регуляции желез внутренней секреции.
- •8. Нейрон – структурно-функциональная единица нервной системы. Структура и функции нервных волокон. Механизмы генерации и проведения нервных импульсов.
- •9. Механизмы межклеточной (симпатической) передачи нервных импульсов. Структура синапса. Медиаторы. Функционирование возбуждающих и тормозных синапсов. Роль торможения в цнс.
- •11. Конечный мозг: кора больших полушарий, подкорковые ядра. Строение и функции коры больших полушарий: борозды, доли, извилины. Функциональные зоны коры.
- •12. Учение Сеченова и Павлова об условных рефлексах, их роль. Механизмы формирования временных условных связей. Виды торможения условных рефлексов.
- •13. Структура и функционирование зрительного анализатора у человека. Теории цветового зрения.
- •14. Структура и функционирование слухового анализатора у человека.
- •Цитология.
- •1. Транспорт веществ через плазмолемму. Пассивный транспорт и его разновидности. Активный транспорт, его виды и механизмы. Ионные насосы, генерация потенциалов покоя и действия.
- •Гистология с основами эмбриологии.
- •1. Сравнительная характеристика тканей животных (эпителиальная, опорно-трофическая, мышечная, нервная).
- •3. Половое размножение и его биологическое значение. Половые клетки, их строение и развитие. Оплодотворение, дробление, гаструляция, органогенез. Формирование признаков типа Хордовые. Клонирование.
- •Генетика.
- •4. Закономерности наследования признаков при моно- и полигибридных скрещиваниях. Законы Менделя. Цитологический механизм расщепления. Комбинативная изменчивость.
- •Биохимия
- •3. Ферменты. Общие и особенные свойства ферментов и катализаторов иной природы. Простые и сложные ферменты, особенности их строения и механизм действия. Номенклатура ферментов.
- •Молекулярная биология.
- •Биотехнология.
- •Биогеография.
- •3. Палеарктическое царство. Границы. Связь с другими царствами. Подразделение на области. Эколого-географическая характеристика. Биоразнообразие и охраняемые природные территории.
- •Общая экология.
- •1. Экосистема как центральное понятие экологии. Основные структурные компоненты экосистемы и принципы их взаимодействия. Различие понятий «экосистема» и «биогеоценоз». Примеры природных экосистем.
- •2. Классификация экологических факторов и основные закономерности их действия. Основные законы факториальной экологии и их значение для практической деятельности.
- •3. История развития понятия «биосфера». Учение о биосфере Вернадского. Определение биосферы, ее структура и границы. Виды вещества в биосфере по Вернадскому. Функции живых организмов в биосфере.
- •4. Преобразование энергии в биосфере. Трофические цепи, сети, трофические уровни. Продуктивность. Виды продукции экосистемы. Продуктивность естественных биоценозов и искусственных агроэкосистем.
- •Социальная экология и природопользование.
- •3. Глобальные проблемы человечества: состояние окружающей среды, истощение природных ресурсов, демографическая ситуация. Возможные пути их решения.
- •Теория эволюции
4. Характерные признаки высших растений. Ткани высших растений, взаимосвязь структуры и функции. Принципы классификаций тканей.
Высшие: наземные, макроскопические, многоклеточные, глубокая дифференцировка клеток, мейоспоры, споры образуются в многоклеточных спорангиях. Оогамия. Гаметангии многоклеточные, отделены стенкой (антеридии и архегонии). Наличие функционально сходных тканей, морфологически сходных вегетативных органов, однотипных (за исключением покрытосеменных) многоклеточных половых органов и спорангиев, кутинизированных спор, правильным чередованием поколений.
Высшие растения - растения, тело которых расчленено на стебель, корень, лист. Имеют закономерное чередование полового и бесполого поколений - гаметофита спорофита.
Ткани растений. У низших тканей нет. Появление тканей – приспособление к обитанию во внешней среде. 1707 г. Линк делил ткани на 2 группы по размеру. Ткань – совокупность клеток имеющих единство физических функций – морфологии, структуры, происхождения и местоположения. Ткани все растений состоят только из клеток, в них нет межклеточного вещества. Межклетник - это пространство между клетками. Ткани высших растений: 1) Образовательные (меристемы). Из всех клеток высших растений делиться могут только клетки образовательной ткани, любая ткань растений происходит из образовательной. Все образовательные ткани делятся митозом. Характеристики меристемы: 1. У нее нет вторичной клеточной стенки. 2. Максимально простое строение. 3. Меристема находится под защитой. Клетки меристемы постоянно делятся. У нее нет цветных пластидов, следовательно она прозрачная. Меристема бывает первичная (апикальная (верхушечная), прокамбия, интеркалярная (вставочная)) и вторичная (камбий, перецикл, феллоген, раневая меристема).
2) Покровная (пограничная). Покровная ткань находится на границе организма и внешней среды и выполняет защитную функцию и функцию обеспечения транспорта. У покровной ткани утолщенная клеточная стенка и на ее поверхности есть слой воска или кутина (кутикула). Клетки, которые выполняют всасывание не умеют кутикулу и имеют максимально тонкую стенку. Устьица - образования, служащие для газообмена. Покровные ткани делятся на первичные (эпидерма, ризодерма) и вторичные (перидерма). Перидерма состоит из феллемы (пробка), феллогена. Эпидерма покрывает органы растений, а ризодерма покрывает корень. Феллодерма выполняет запасающую функцию, она похожа на паренхиму. На поверхности покровных тканей есть чечевички - места, где перидерма лежит рыхло, они служат для газообмена. К пограничным тканям относят эндодерму и экзодерму.
3) Проводящая. Проводящие ткани выполняют основную роль передачи информации в организме растения. Они обеспечивают быстрый транспорт воды по растению. Проводящие ткани делятся на ксилему и флоэму (обе эти ткани состоят из нескольких видов клеток). Проводящие ткани обеспечивают транспорт веществ в теле растений. От корней в стебель и листья осуществляется перенос минеральных веществ, всасываемых из почв, - восходящий ток. Он обеспечивается ксилемой, или древесиной. Движение органических веществ, продуктов фотосинтеза к местам их использования или отложения в запас (к корням, плодам, семенам и другим органам) составляет нисходящий ток. Он осуществляется флоэмой, или лубом, располагающимся кнаружи от древесины.
Ксилема состоит из: 1. Лучевая паренхима (живые клетки). 2. Трахеиды (мертвые клетки). 3. Членики сосудов (мертвые клетки). 4. Волокна либриформа. 5. Запасающая паренхима. /Она выполняет проводящую и механическую функции. Трахеиды преобразуются в членики сосудов. Лучевая паренхима обеспечивает боковой транспорт. Волокна либриформа служат для укрепления ксилемы. Трахеиды - вытянутые мертвые клетки, одревесневевшие стенки которых имеют углубления (поры), затянутые перовой мембраной. Ток жидкости по трахеидам медленный и происходит путем фильтрации через мембраны соседних клеток. Трахеиды - наиболее древние проводящие элементы. Они встречаются у цветковых растений, а у голосеменных и папоротникообразных являются единственными проводящими элементами ксилемы. У покрытосеменных имеются также сосуды. Трахеи представляют собой полые трубки, состоящие из продольного ряда клеток - члеников. Перегородки между члениками содержат сквозные отверстия (перфорации) или полностью разрушаются, что многократно увеличивает скорость тока раствора.
Флоэма состоит из: 1. Лучевая паренхима флоэмы. 2. Ситовидные клетки. 3. Ситовидные трубки. 4. Клетки спутники. /Клетки флоэмы живые - в них сохраняется цитоплазма, но утрачивается ядро. У клеток этой ткани есть клетки спутники, которые помогают "выжить" проводящим клеткам флоэмы. Они "качают" некоторые химические вещества через себя. Флоэму часто называют лубом. В состав флоэмы входят ситовидные трубки и клетки-спутницы, окруженные лубяными волокнами. Ситовидная трубка состоит из вертикального ряда живых клеток, поперечные перегородки между которыми продырявлены в виде сита, сквозь них проходят тяжи цитоплазмы. Транспорт веществ осуществляется по цитоплазме члеников. Предполагают, что клетки-спутницы совместно с члениками ситовидных трубок составляют единую физиологическую систему и в известной степени регулируют функции ситовидных трубок, способствуя току ассимилятов. Элементы ксилемы и флоэмы с волокнами механической ткани образуют сосудисто-волокнистые пучки. Они располагаются во всех органах и объединяют растение в единое целое.
4) Механическая. Механические ткани делятся на колленхиму и склеренхиму. Они придают растению прочность. Колленхима всегда находится в состоянии тургора, благодаря которому растения могут передвигать свои части. Она твердая, но упругая. Склеренхима - это мертвая ткань растений, у нее толстые вторичные клеточные стенки. Эта ткань делится по структуре на волокна, обеспечивающие прочность, и склереиды - защита от удара. Склереиды и колленхима - мертвые ткани. Колленхима очень часто находится под фотосинтезирующей паренхимой.
5) Основная ткань. Паренхима выполняет соединительную, запасающую, механическую, проводящую, защитную, секретирующую, фотосинтезирующую функции и функцию деления. У этой ткани толстая первичная клеточная стенка, а вторичная клеточная стенка без лигнина. Хлоренхима - фотосинтезирующая паренхима. Аэроренхима. В клетках запасающей паренхимы накапливаются избыточные в данный период развития растения продукты обмена веществ: углеводы, белки, жиры и др. Она хорошо развита в стеблях, корнях, корневищах, клубнях, луковицах. воздухоносная паренхима представлена в разных органах болотных и водных растений и состоит из клеток с тонкими стенками.
6) Выделительные: наружные и внутренние. Выделительные ткани представлены различными образованьями (чаще многоклеточными, реже одноклеточными), выделяющими из растения или изолирующими в его тканях продукты обмена веществ либо воду - листья многих растений способны выделять воду в условиях избыточной влажности. По проводящим пучкам вода подается к эпидерме, в которой по краям листа находятся водяные устьица. Млечники образуют млечный сок (латекс). У насекомоядных растений на листьях находятся желёзки, выделяющие пищеварительные соки. В цветках обычно содержатся нектарники, образующие сахаристую жидкость - нектар. Он служит средством привлечения животных, опыляющих растения. Смоляные ходы хвойных, эфиромасличные ходы цитрусовых выделяют вещества, имеющие защитное значение.
5. Локализация меристем в теле растений, их роль в образовании постоянных тканей. Классификация меристем.
Тканями называют комплексы клеток, обладающих сходным строением, имеющих единое происхождение и выполняющих одинаковые функции. Растительные ткани возникли в процессе эволюции с переходом растений к наземному образу жизни и наибольшей специализации достигли у цветковых. Формирование тканей происходило параллельно с дифференцировкой тела растения на органы. Классификация растительных тканей основана на единстве выполняемых функций, происхождении, сходстве строения и расположении клеток в органах растения. По этим критериям ткани делят на несколько групп: меристематические или образовательные, покровные, основные, механические, проводящие, выделительные. Образовательные ткани благодаря постоянному митотическому делению их клеток обеспечивают не только рост, но и образование всех тканей растения. Часть дочерних клеток дифференцируется, т.е. превращается в клетки различных тканей. Другие, сохраняя свои меристематические свойства, продолжают делиться и образуют все новые и новые клетки. Меристемы возникают в зиготе на ранних этапах развития зародыша и являются первичной тканью, из которой состоит весь зародыш. В процессе роста растения меристемы сохраняются в точках роста - апикальные меристемы (верхушка стебля и кончик корня), а также вдоль стебля - боковые меристемы. Верхушечные меристемы обесточивают рост растения в длину, а боковые - в ширину. Существуют еще вставочные меристемы (интеркалярные), которые сохраняются в зонах роста (основание черешков листьев и междоузлия). Меристемы, имеющие свое происхождение от меристем зародыша, называют первичными, к ним относятся верхушечные. К вторичным меристемам принадлежат ткани, которые образуются из первичных меристем и клеток других тканей. Это боковые меристемы - камбий, раневые меристемы (камбий обеспечивает рост стебля в ширину, раневые - регенерацию тканей при повреждениях).
Классификация меристем: 1) По происхождению: а) первичные, которые способны к делению изначально и обуславливают первичный рост органов проростка (прокамбий и перицикл); б) вторичные, возникающие позднее первичных и обуславливающие рост органов преимущественно в толщину (камбий, феллоген). 2) По месту происхождения: а) верхушечные или апикальные; б) боковые или латеральные; в) вставочные или интеркалярные; г) раневые, или травматические.
Инициальная клетка меристемы принципиально может дать начало любой клетке организма. Тело наземных растений - производное относительно немногих инициальных клеток.
Первичные меристемы обладают меристематической активностью, т. е. способны к делению изначально. В ряде случаев способность к активному делению может вновь возникнуть и у клеток, уже почти утративших это свойство. Такие «вновь» возникшие меристемы называют вторичными.
В теле растения меристемы занимают различное положение, что позволяет их классифицировать по положению:
Апикальные меристемы располагаются на верхушках осевых органов растения и обеспечивают рост тела в длину, а латеральные - преимущественно рост в толщину. Каждый побег и корень, а также зародышевый корешок, почечка зародыша имеют апикальную меристему. Апикальные меристемы первичны и образуют конусы нарастания корня и побега.
Латеральные меристемы располагаются параллельно боковым поверхностям осевых органов, образуя своего рода цилиндры, на поперечных срезах имеющие вид колец. Часть из них относится к первичным. Первичными меристемами являются прокамбий и перицикл, вторичными - камбий и феллоген.
Интеркалярные, или вставочные, меристемы чаще первичны и сохраняются в виде отдельных участков в зонах активного роста (например, у оснований междоузлии, в основаниях черешков листьев).
Существуют также раневые меристемы. Они образуются в местах повреждения тканей и органов и дают начало каллюсу - особой ткани, состоящей из однородных паренхимных клеток, прикрывающие место поражения Каллюсо-образовательная способность растений используется в практике садоводства при размножении их черенками и прививками. Чем интенсивнее каллюсообразование, тем больше гарантия срастания подвоя с привоем и укоренения черенков. Образование каллюса - необходимое условие культуры тканей растения на искусственных средах.
Клетки апикальных меристем более или менее изодиаметричны по размерам и многогранны по форме. Межклетников между ними нет, оболочки тонкие, содержат мало целлюлозы. Полость клетки заполнена густой цитоплазмой с относительно крупным ядром, занимающим центральное положение. Вакуоли многочисленные, мелкие, но под световым микроскопом обычно не заметны. Эргастические вещества, как правило, отсутствуют. Пластид и митохондрий мало и они мелки.
1- конус нарастания, 2 - зачаток листа, 3 - бугорок пазушной почки
6. Понятие о стеле - совокупности проводящих тканей осевых органов. Эволюция типов стелы у высших растений.
Учение о стеле создано французскими ботаниками Ф. Ван Тигемом и А. Дулио (1870), которым принадлежит и первая классификация типов стелы. Дальнейшее развитие с. т. получила в работах английского ботаника Г. Бребнера (1902), американского - Э. Джефри (1903, 1917). Стела – вся совокупность проводящей системы осевых органов растения, включающая проводящие и другие типы тканей.
Исходным типом стелы, характерным для древнейших высших растений - псилофитов (риния), считают протостелу, имеющую вид центр, тяжа, во внутренней части которого расположена ксилема, окруженная нерезко отграниченной от первичной коры флоэмой. В современной флоре протостелу имеют некоторые плауны и папоротники. В процессе исторического развития наземных растений происходило, как правило, увеличение размеров стелы. Наиболее примитивной формой протостелы является актиностела, имеющая радиальные выступы ксилемы в виде лучей (на поперечном срезе имеет вид звезды). При переходе к актиностеле флоэма и ксилема имеют большую поверхность соприкосновения с окружающими живыми тканями, что способствует лучшему проведению веществ. Актиностела, характерная для псилофитов (астероксилон), а из современных растений - для псилота.
В плектостеле, обычной для плаунов, ксилема рассечена на лентовидные тяжи.
В процессе эволюции протостела дала начало сифоностеле. Сифоностела имеет трубчатое строение, в ней появляется сердцевина. Ксилема, играющая еще и роль арматурной ткани, перемещается на периферию стебля, образование такой трубчатой конструкции делает стебель еще более прочным. Различные типы сифоностелы характерны для многих папоротников. У папоротников сифоностела бывает трёх типов: эктофлойная, амфифлойная (соленостела) и диктиостела. В эктофлойная ксилема снаружи окружена флоэмой, перициклом и эндодермой. В амфифлойной имеются не только наружные, но и внутренние флоэма, перицикл и эндодерма. В результате дробления амфифлойной сифоностелы в связи с появлением многочисленных листовых прорывов, заполненных паренхимой, возникла диктиостела, имеющая вид сетчатого цилиндра, т.к. составляющие её проводящие ткани образуют переплетающиеся тяжи. Они построены по типу концентрических амфикрибральных пучков, в которых флоэма расположена вокруг ксилемы; флоэма окружена перициклом и эндодермой.
Формирование эустелы, в которой каждая протостела превратилась в коллатеральный пучок. У хвощей эустела представлена закрытыми коллатеральными пучками, расположенными вокруг центральной воздушной полости и соединяющимися в узлах. Эустела двудольных растений представлена системой открытых коллатеральных или биколлатеральных пучков с первичной ксилемой; пучки разделены паренхимными сердцевинными лучами, пересекающими стелу в радиальном направлении.
Разновидность этой стелы называют артростелой, у разных видов хвощей артростелы характеризуются различным расположением эндодермы.
Развитие проводящих пучков листьев, которые, войдя в стебель, располагаются по всему поперечному сечению стебля привели к преобразованию эустелы в атактостелу однодольных растений, утратившую способность к вторичному утолщению. Проводящие пучки в атактостеле коллатеральные или концентрические амфивазальные (ксилема в них окружает флоэму).