
- •Введение
- •1.2. Функция Кирхгофа. Абсолютно черное тело
- •1.3. Закон Стефана-Больцмана. Формула Рэлея-Джинса. Закон смещения Вина
- •1.4. Теория Планка
- •2. Квантовые свойства излучения
- •2.1. Фотоэффект
- •Энергия, масса и импульс фотона. Давление света
- •Эффект Комптона
- •II. Основы атомной и молекулярной физики
- •3. Закономерности в атомных спектрах Теория атома Бора
- •4. Элементы квантовой механики
- •4.1. Волновые свойства вещества. Гипотеза де Бройля
- •4.2. Принцип неопределенности Гейзенберга
- •4.3. Волновая функция
- •5. Квантовые уравнения движения
- •5.1. Уравнение Шредингера
- •5.2. Уравнение Шредингера для свободной частицы
- •5.3. Уравнение Шредингера для частицы в силовом поле
- •5.4. Стационарное уравнение Шредингера
- •5.5. Уравнение Шредингера для частицы в потенциальной яме
- •6. Дополнительные приложения квантовой механики
- •6.1. Прохождение частицы через потенциальный барьер. Туннельный эффект
- •6.2. Гармонический осциллятор. Фононы
- •7. Квантово-механическое описание атома водорода
- •7.1. Уравнение Шредингера для атома водорода. Главное квантовое число
- •7.2. Момент импульса атома. Орбитальное и магнитное квантовые числа
- •7.3. Правила отбора. Спектры атомов
- •7.4. Собственный момент электрона
- •8. Физика многоэлектронных систем
- •8.1. Спектры многоэлектронных атомов. Принцип Паули
- •8.2. Эффект Зеемана
- •8.3. Природа химической связи. Виды молекул
- •9. Физические основы лазеров
- •9.1. Спонтанное и вынужденное излучение
- •9.2. Принцип работы и устройство лазеров
- •III. Основы квантовой статистики
- •10. Статистика Бозе-Эйнштейна и Ферми-Дирака
- •IV. Зонная теория твердых тел
- •11. Металлы, полупроводники, диэлектрики Образование энергетических зон
- •12. Собственная и примесная проводимость полупроводников
- •12.1. Собственная проводимость
- •12.2. Примесная проводимость
- •12.3. Квантовая теория проводимости металлов
- •12.4. Сверхпроводимость
- •V. Основы ядерной физики
- •13. Характеристики атомного ядра
- •13.1. Состав и характеристики атомных ядер
- •13.2. Модели ядра: капельная и оболочечная
- •13.3. Зависимость удельной энергии связи атомного ядра от числа нуклонов
- •13.3. Ядерные силы
- •13.4. Образование ядер. Дефект масс
- •14. Радиоактивность и ее виды
- •14.1. Закон радиоактивного превращения
- •14.2. Альфа-распад
- •14.3. Бета-распад
- •14.4. Спонтанное деление тяжелых ядер. Гамма-излучение
- •15. Ядерные реакции
- •15.1. Вынужденные ядерные процессы
- •15.2. Реакция деления ядра
- •15.3. Реакция синтеза атомных ядер
- •Заключение
- •Библиографический список
- •Оглавление
- •394026 Воронеж, Московский просп., 14
12.3. Квантовая теория проводимости металлов
Рассмотрим процесс проводимости с квантовой точки зрения. В предыдущей лекции было сказано, что при объединении атомов в кристаллическую решетку происходит снижение высоты стенок потенциального барьера вокруг ядра каждого атома. При этом внешние (валентные электроны) получают возможность при определенных условиях перемещаться по всему кристаллу, электроны же внутренних оболочек остаются на своих местах. Для металлической решетки условием освобождения электронов является воздействие на кристалл энергии порядка 10–22 эВ, т.е. энергии теплового движения при любой температуре достаточно, чтобы электрон оторвался от ядра и стал свободным. Таким образом, в отличие от полупроводников, металлы всегда имеют электроны проводимости. Поэтому при рассмотрении процесса проводимости изучают не факторы, влияющие на образование свободных электронов, а наоборот – факторы, мешающие проводимости. Напомним, что в направленном движении зарядов в металлах могут участвовать только электроны (понятие дырка здесь не возникает).
Отличие механизмов проводимости в металлах и полупроводниках, объясняет обратную (по отношению к случаю полупроводников) зависимость электропроводности от температуры (рис. 12.8). В металлах наблюдается уменьшение проводимости с ростом температуры. Это связано с одним из факторов, определяющих проводимость металла – усилением тепловых колебаний кристаллической решетки, что сопровождается увеличением числа столкновений свободных электронов с положительными ионами решетки – увеличением сопротивления.
Рис. 12.8. Зависимость удельного сопротивления металлов от температуры
При понижении температуры число столкновений электронов с атомами решетки снижается и при 0 K обращается в нуль. Сопротивление металла также зависит от того, насколько идеальной является кристаллическая решетка. Реальные кристаллы имеют довольно много разнообразных дефектов. Искажение строго периодичной структуры может быть обусловлено заменой атомов решетки инородными атомами, появлением атомов в междоузлиях, наконец, отсутствием каких-либо атомов решетки (вакансии). Любой из этих дефектов может оказывать влияние на движение электрона в кристалле, причем при небольшой концентрации дефектов от температуры это влияние не зависит. При температуре 0 K, когда колебания решетки отсутствуют, остаточное сопротивление металлов, не переходящих в сверхпроводящее состояние (рис. 12.8 кривая 1), будет обусловлено дефектностью кристаллической решетки.
Если в единице
объема металла имеется n
свободных электронов. Дрейфовой скоростью
электронов называют среднюю скорость
перемещения электрона в пределах
кристалла:
(12.8)
В отсутствие
внешнего поля дрейфовая скорость равна
нулю и электрический ток в металле
отсутствует. При наложении на металл
внешнего электрического поля напряженностью
дрейфовая скорость уже не будет равна
нулю, согласно закону Ома (см. раздел
«электромагнетизм» тему «постоянный
ток») дрейфовая скорость электронов
конечна и пропорциональна силе
,
действующей на электрон, заряд которого
равен
.
Согласно закону Ньютона, силе должно
быть пропорционально ускорение, а не
скорость. Единственным случаем в
механике, когда сила оказывается
пропорциональной скорости, является
ситуация, когда помимо внешней силы на
тело действует еще и сила сопротивления
среды. В металле также можно рассмотреть
силу сопротивления движению электрона:
(12.9)
где
– коэффициент пропорциональности, в
данной ситуации
,
m*
– эффективная масса электрона (см.
раздел 11), τ
– представляет собой время релаксации,
которое характеризует процесс
восстановления равновесия между
электронами и кристаллической решеткой,
которое было нарушено действием внешнего
поля
.
Тогда уравнение,
описывающее поведение электронов в
металле будет иметь вид:
(12.10)
Решив это уравнение, можно найти дрейфовую скорость электронов в металле, находящемся во внешнем электрическом поле:
(12.11)
Тогда плотность тока в металле равна:
(12.12)
где n – количество свободных электронов в данном объеме, другими словами – концентрация электронов в металле.
Сравнивая полученное
выражение с законом Ома в дифференциальной
форме:
,
получим, что:
(12.13)