
- •1. Кинематическое описание движения. Перемещение, скорость.
- •2. Ускорение при криволинейном движении: нормальное и тангенциальное ускорение. Плоское вращение. Угловая скорость, ускорение.
- •3. Связь между векторами скорости и угловой скорости материальной точки. Нормальное, тангенциальное и полное ускорение.
- •4. Степени свободы и обобщенные координаты. Число степеней свободы абсолютно твердого тела.
- •5. Основная задача динамики. Понятие состояния в механике. Законы Ньютона.
- •6. Система единиц си. Границы применимости классической механики.
- •7. Импульс, закон сохранения импульса. Применение закона сохранения импульса к абсолютно неупругому удару. Движение тел с переменной массой.
- •Движение тел с переменной массой.
- •8. Момент импульса. Закон сохранения момента импульса.
- •9. Момент силы. Основное уравнение динамики вращательного движения.
- •10. Силы в природе. Силы сухого и вязкого трения.
- •11. Упругая сила, закон Гука.
- •12. Консервативные и неконсервативные силы в механике. Потенциальная энергия.
- •13. Кинетическая энергия. Закон сохранения энергии в механике.
- •14. Закон всемирного тяготения. Движение в центральном поле. Космические скорости. Законы Кеплера.
- •15. Уравнение движения абсолютно твердого тела. Центр масс, примеры вычисления центра масс.
- •16. Плоское вращение абсолютно твердого тела и его кинетическая энергия.
- •17. Момент инерции тела и его физический смысл. Примеры вычисления момента инерции твердых тел. Теорема Штейнера.
- •18. Момент импульса твердого тела. Вектор угловой скорости и вектор момента импульса. Гироскопический эффект. Угловая скорость прецессии.
- •Гироскоп
- •19. Идеальная и вязкая жидкость. Гидростатика несжимаемой жидкости. Стационарное движение идеальной жидкости. Уравнение Бернулли.
- •20. Гидродинамика вязкой жидкости, коэффициент вязкости. Течение по трубе. Формула Пуазейля. Закон подобия. Формула Стокса. Турбулентность. Движение вязких жидкостей и газов
- •21. Основное уравнение молекулярно - кинетической теории идеального газа. Средняя кинетическая энергия поступательного движения молекулы.
- •22. Молекулярно - кинетический смысл температуры.
- •23. Внутренняя энергия идеального газа.
- •24.Теплоёмкость идеального газа при постоянном оъёме и давлении.
- •25. Статистические распределения. Вероятность и флуктуации.
- •26. Распределение Максвелла.
- •27. Средняя, среднеквадратичная и наиболее вероятная скорости газовых молекул.
- •28. Барометрическая формула. Распределение Больцмана.
- •29. Понятие о физической кинетике. Средняя длина свободного пробега, эффективный диаметр молекул и сечение рассеяния.
- •30. Вязкость, теплопроводность и диффузия в газах.
- •31. Обратимые и необратимые термодинамические процессы.
- •32. Первое начало термодинамики. Простейшие термодинамические процессы.
- •33. Кпд идеальной тепловой машины. Цикл Карно. Понятие термодинамической температуры.
- •34.Энтропия и ее термодинамический смысл. Второе начало термодинамики.
- •35. Уравнение Ван-дер-Вальса и его анализ. Экспериментальные изотермы.
- •36. Перегретая жидкость и перенасыщенный пар. Внутренняя энергия реального газа.
- •37.Эффект Джоуля - Томпсона. Сжижение газов.
- •38.Строение жидкостей. Силы поверхностного натяжения. Коэффициент поверхностного натяжения.
- •39. Давление под изогнутой поверхностью жидкости. Формула Лапласа.
- •40. Явление на границе жидкости и твердого тела. Краевой угол. Капиллярные явления.
- •41. Твердые тела. Аморфные и кристаллические тела.
- •42. Анизотропия кристаллов. Дефекты кристаллов.
- •43. Фазовые переходы первого и второго рода. Кривая фазового равновесия.
- •44. Фазовая диаграмма состояния вещества. Тройная точка. Уравнение Клайперона - Клаузиуса.
- •45. Уравнение гармонического колебания и его основные параметры.
- •46. Колебания груза под действием упругой силы.
- •47. Энергия гармонического колебания.
- •48. Физический и математический маятники. Приведенная длина и центр качания физического маятника.
- •49. Уравнение затухающих колебаний. Декремент затухания.
- •50. Действие периодической силы на затухающий гармонический осциллятор. Резонанс.
- •55. Волновое уравнение. Фазовая скорость волны в твердых телах и жидкостях.
- •56.Скорость звука в газах.
- •57. Передача информации с помощью волн.
- •58. Групповая скорость волны. Дисперсия.
- •59.Стоячие волны. Колебания струны.
- •60. Громкость и высота тона звука.
- •61. Эффект Доплера.
12. Консервативные и неконсервативные силы в механике. Потенциальная энергия.
Работа силы.
Все силы, встречающиеся в механике макpоскопических тел, принято разделять на консервативные и неконсервативные. Консервативными называются силы, работа которых не зависит от формы пути между двумя точками (при перемещении тела между ними). Примером консервативных сил является, например, сила тяжести.
работа силы тяжести не зависит от формы пути. Она определяется только начальным и конечным положениями перемещающейся точки. работа консервативных сил на замкнутом контуре равна нулю.
Все силы, не являющиеся консервативными, называются неконсервативными силами. К ним относятся, прежде всего, так называемые диссипативные силы, например силы трения, возникающие при скольжении одного тела относительно другого. Сила трения в этом случае всегда направлена против скорости движения, то есть против перемещения тела. Работа этой силы всегда отрицательна.Работа силы трения скольжения при движении по замкнутому контуру не равна нулю!
Потенциальной энергией называют часть энергии механической системы, зависящую от конфигурации системы, т.е от взаимного расположения частиц системы и их положения во внешнем силовом поле. Убыль потенциальной энергии при перемещении системы из произвольного положения 1 в другое произвольное положение 2 измеряется той работой А12, которую совершают при этом все потенциальные силы (внутр. и внеш.), действующие на систему, Еп(1)-Eп(2)=A12, где Еп(1) и Eп(2)- значения потенциальной энергии системы в начальном и конечном положениях.
При прямолинейном движении и постоянном значении силы работа равна произведению величины проекции вектора силы на направление движения и величины пройденного пути:
При этом действующая
сила F
и вектор скорости v
процесса γ
за всё время наблюдения Δt
постоянны, работа численно равна
,
в противном случае она вычисляется как
интеграл:
.
Как следствие, если движение процесса ортогонально силе F, её работа равна нулю.
13. Кинетическая энергия. Закон сохранения энергии в механике.
Энергия это физическая величина, характеризующая способность систем тел совершать работу. Механическая энергия делится на кинетическую и потенциальную. E=Eк+Eп. Кинетическая энергия тела является мерой его механического движения и измеряется той работой, которую может совершить это тело при его торможении до полной остановки. Кинетическая энергия материальной равна половине произведения массы m точки на квадрат скорости ее движения: Ек=½mv2 . – при поступательном движении.
Закон сохранения энергии — фундаментальный закон природы, заключающийся в том, что энергия замкнутой системы сохраняется во времени. Энергия не может возникнуть из ничего и не может в никуда исчезнуть, она может только переходить из одной формы в другую. В классической механике закон проявляется в сохранении механической энергии (суммы потенциальной и кинетической энергий). Частный случай — Закон сохранения механической энергии — механическая энергия консервативной механической системы сохраняется во времени. Проще говоря, при отсутствии сил типа трения механическая энергия не возникает из ничего и не может никуда исчезнуть. В замкнутой системе полная механическая энергия этой системы остается величиной постоянной Wполн=Wk+Wn Wk+Wn = const
Закон сохранения энергии — это интегральный закон. Это значит, что он складывается из действия дифференциальных законов и является свойством их совокупного действия. З.с.э отражает понятие однородности времени. Не важно в какой момент времени рассматривается система, з. для нее будет выполнятся. Можно добавить к законам сохранения массы.