
- •1. Кинематическое описание движения. Перемещение, скорость.
- •2. Ускорение при криволинейном движении: нормальное и тангенциальное ускорение. Плоское вращение. Угловая скорость, ускорение.
- •3. Связь между векторами скорости и угловой скорости материальной точки. Нормальное, тангенциальное и полное ускорение.
- •4. Степени свободы и обобщенные координаты. Число степеней свободы абсолютно твердого тела.
- •5. Основная задача динамики. Понятие состояния в механике. Законы Ньютона.
- •6. Система единиц си. Границы применимости классической механики.
- •7. Импульс, закон сохранения импульса. Применение закона сохранения импульса к абсолютно неупругому удару. Движение тел с переменной массой.
- •Движение тел с переменной массой.
- •8. Момент импульса. Закон сохранения момента импульса.
- •9. Момент силы. Основное уравнение динамики вращательного движения.
- •10. Силы в природе. Силы сухого и вязкого трения.
- •11. Упругая сила, закон Гука.
- •12. Консервативные и неконсервативные силы в механике. Потенциальная энергия.
- •13. Кинетическая энергия. Закон сохранения энергии в механике.
- •14. Закон всемирного тяготения. Движение в центральном поле. Космические скорости. Законы Кеплера.
- •15. Уравнение движения абсолютно твердого тела. Центр масс, примеры вычисления центра масс.
- •16. Плоское вращение абсолютно твердого тела и его кинетическая энергия.
- •17. Момент инерции тела и его физический смысл. Примеры вычисления момента инерции твердых тел. Теорема Штейнера.
- •18. Момент импульса твердого тела. Вектор угловой скорости и вектор момента импульса. Гироскопический эффект. Угловая скорость прецессии.
- •Гироскоп
- •19. Идеальная и вязкая жидкость. Гидростатика несжимаемой жидкости. Стационарное движение идеальной жидкости. Уравнение Бернулли.
- •20. Гидродинамика вязкой жидкости, коэффициент вязкости. Течение по трубе. Формула Пуазейля. Закон подобия. Формула Стокса. Турбулентность. Движение вязких жидкостей и газов
- •21. Основное уравнение молекулярно - кинетической теории идеального газа. Средняя кинетическая энергия поступательного движения молекулы.
- •22. Молекулярно - кинетический смысл температуры.
- •23. Внутренняя энергия идеального газа.
- •24.Теплоёмкость идеального газа при постоянном оъёме и давлении.
- •25. Статистические распределения. Вероятность и флуктуации.
- •26. Распределение Максвелла.
- •27. Средняя, среднеквадратичная и наиболее вероятная скорости газовых молекул.
- •28. Барометрическая формула. Распределение Больцмана.
- •29. Понятие о физической кинетике. Средняя длина свободного пробега, эффективный диаметр молекул и сечение рассеяния.
- •30. Вязкость, теплопроводность и диффузия в газах.
- •31. Обратимые и необратимые термодинамические процессы.
- •32. Первое начало термодинамики. Простейшие термодинамические процессы.
- •33. Кпд идеальной тепловой машины. Цикл Карно. Понятие термодинамической температуры.
- •34.Энтропия и ее термодинамический смысл. Второе начало термодинамики.
- •35. Уравнение Ван-дер-Вальса и его анализ. Экспериментальные изотермы.
- •36. Перегретая жидкость и перенасыщенный пар. Внутренняя энергия реального газа.
- •37.Эффект Джоуля - Томпсона. Сжижение газов.
- •38.Строение жидкостей. Силы поверхностного натяжения. Коэффициент поверхностного натяжения.
- •39. Давление под изогнутой поверхностью жидкости. Формула Лапласа.
- •40. Явление на границе жидкости и твердого тела. Краевой угол. Капиллярные явления.
- •41. Твердые тела. Аморфные и кристаллические тела.
- •42. Анизотропия кристаллов. Дефекты кристаллов.
- •43. Фазовые переходы первого и второго рода. Кривая фазового равновесия.
- •44. Фазовая диаграмма состояния вещества. Тройная точка. Уравнение Клайперона - Клаузиуса.
- •45. Уравнение гармонического колебания и его основные параметры.
- •46. Колебания груза под действием упругой силы.
- •47. Энергия гармонического колебания.
- •48. Физический и математический маятники. Приведенная длина и центр качания физического маятника.
- •49. Уравнение затухающих колебаний. Декремент затухания.
- •50. Действие периодической силы на затухающий гармонический осциллятор. Резонанс.
- •55. Волновое уравнение. Фазовая скорость волны в твердых телах и жидкостях.
- •56.Скорость звука в газах.
- •57. Передача информации с помощью волн.
- •58. Групповая скорость волны. Дисперсия.
- •59.Стоячие волны. Колебания струны.
- •60. Громкость и высота тона звука.
- •61. Эффект Доплера.
7. Импульс, закон сохранения импульса. Применение закона сохранения импульса к абсолютно неупругому удару. Движение тел с переменной массой.
Импульсом, или количеством движения мат.т. называется векторная величина p, равная произведению массы m мат. точки на её скорость. Импульс системы равен p=mVc. импульс p замкнутой системы не изменяется с течением времени, т.е. dp/dt=0 и p=const. В отличие от законов Ньютона, з.сохр. импульса справедлив не только в рамках классической механики. Он принадлежит к числу самых основных физических законов, т.к. связан с определенным свойством симметрии пространства – его однородностью.
Абсолютно неупругим ударом называется такой удар, после которого тела меняют свою форму и движутся как единое целое с одинаковой скоростью или покоятся. Запишем закон сохранения импульса для абсолютно неупругого удара m1v1+m2v2=(m1+m2)u, где v1 и v2 - скорости тел до удара, u - общая скорость после удара.
Движение тел с переменной массой.
Уравнение
Мещерского.
,
где
vотн-
скорость истечения топлива относительно
ракеты;
v
- скорость движения ракеты;
m
- масса ракеты в данный момент времени.
Формула
Циолковского.
m0
- масса ракеты в момент старта.
8. Момент импульса. Закон сохранения момента импульса.
Моментом импульса т. наз. величина физически равная векторному произведению радиуса вектора т. на ее импульс L=[r*p] p=mV L=[r*mV] L=Iw lw –напр. в одну сторону. Моментом импульса тела называется величина, равная векторной сумме моментов импульса его частей: L = Li = [ri·pi] = [ri·mivi].
Момент импульса симметричного тела, вращающегося вокруг оси симметрии, равен произведению его момента инерции относительно этой оси на угловую скорость. Вражение аналогично определению импульса тела в случае его поступательного движения точки p = m·v. Следовательно, момент импульса твердого тела - есть мера его вращательного движения.
Закон сохранения момента импульса.
Момент импульса системы тел сохраняется неизменным при любых взаимодействиях внутри системы, если суммарный момент внешних сил, действующих на систему равен нулю. в изолированной системе сумма моментов импульса всех тел есть величина постоянная
J1ω1+J2ω2+…+Jnωn=const где Ji и ωi моменты инерции и угловые скорости тел, составляющих изолированную систему. Из основного уравнения динамики вращательного движения при М=0 получаем d/dt(Jω)=0Jω=const В изолированной системе сумма моментов импульса всех тел есть величина постоянная.
9. Момент силы. Основное уравнение динамики вращательного движения.
Моментом силы наз. физ. величина численно равная векторному произведению радиуса вектора силы на вектор силы M =[r*F] r- радиус вектор силы. Линия в доль которой действуют силы наз. линией действия силы. M=rRsin r*sin=l M=F*l l- плече силы, перпендикуляр кратчайшее расстояние до линии действия силы. Моментом силы относительно оси Z наз. проекция момента силы на выбранное направление Z Mz=[r*F]z
Согласно уравнению (5.8) второй закон Ньютона для вращательного движения
⇾
⇾
В физике момент силы можно понимать как «вращающая сила». В системе СИ единицами измерения для момента силы является ньютон-метр, хотя сантиньютон-метр (cN•m), футо-фунт (ft•lbf), дюйм-фунт (lbf•in) и дюйм-унция (ozf•in) также часто используются для выражения момента силы. Символ момента силы τ (тау). Момент силы иногда называют моментом пары сил, это понятие возникло в трудах Архимеда над рычагами. Вращающиеся аналоги силы, массы и ускорения есть момент силы, момент инерции и угловое ускорение соответственно. Сила, приложенная к рычагу, умноженная на расстояние до оси вращения рычага, есть момент силы.
момент силы частицы определяется как векторное произведение:
где
—
сила, действующая на частицу, а
—
радиус-вектор частицы.
Выражение
носит название основного уравнения
динамики вращательного движения и
формулируется следующим образом:
изменение момента количества движения
твердого тела
,
равно импульсу момента
всех
внешних сил, действующих на это тело.