
Ответы к Нефти и Газу экзаменационные билеты
.pdfvk.com/club152685050 | vk.com/id446425943
Экзаменационный билет №___13__
1.Природные битумы их классификация
2.Классификационные критерии пород-коллекторов
3.Перспективы нефтегазоносности Беларуси
1.Природные битумы их классификация
2.Классификационные критерии пород-коллекторов
Коллекторы классифицируются по целому ряду признаков, поэтому имеется множество различных их классификаций. Наиболее важными классификационными критериями являются:
-условия аккумуляции и фильтрации флюидов;
-величина открытой или эффективной пористости и величина проницаемости;
-характер проницаемости;
-генезис и тип пород.
Породы-коллекторы классифицируются и по другим критериям, или классификационным признакам, например: по масштабам распространения в пределах нефтегазоносных комплексов; толщине и выдержанности литологического состава; содержанию остаточной воды; количеству и составу цемента.
По условиям фильтрации пластовых флюидов коллекторы делятся на простые и сложные
(смешанные). К простым коллекторам относятся поровые и чисто трещинные, а к смешанным - трещинно-поровые и порово-трещинные. Чисто трещинные и смешанные (трещинно-поровые и поровотрещинные) коллекторы часто называют просто трещинными, поскольку фильтрация в них обусловлена, главным образом, наличием трещин.
По условиям аккумуляции флюидов, которые определяются морфологией пустотного пространства коллекторы также делятся на простые и сложные (смешанные).
В простых коллекторах пустотное пространство представлено следующими видами: порами,
кавернами, карстовыми полостями и трещинами.
Поровые коллекторы обычно связаны с терригенными породами – песчаниками и алевролитами и реже - с органогенными карбонатными породами. Остальные виды пустотного пространства - каверны, карстовые полости и трещины в основным вязаны с карбонатными коллекторами.
Чисто трещинные коллекторы встречаются редко. Образуются они за счет вторичной трещиноватости в плотных жестких и хрупких породах, минеральная часть которых практически лишена пористости.
Смешанное пустотное пространство характерно для карбонатных пород, где оно представлено сочетанием видов пустот, которые образуют следующие типы пустотного пространства: поровотрещинное, порово-каверновое, карстово-каверновое, порово-каверново-карстовое, поровостилолитовое. Трещинно-поровые коллекторы преимущественно связаны с карбонатными породами, пустотное пространство которых образовано, главным образом, межзерновыми порами и кавернами.
При характеристике типа коллектора основной вид пустот ставится в названии на последнее место.
По величине эффективной пористости коллекторы делятся на классы, как в зависимости от типа горных пород, так и не зависимо от них. П.П. Авдусин и М.А. Цветкова (1943) разделили терригенные коллекторы на пять классов (от А до Е, ёмкость – от большой до малой). Практическое значение имеют коллекторы первых четырех классов.
По величине коэффициента проницаемости коллекторы также делятся на классы, как в зависимости от типа горных пород или типа фильтрующих пустот, так и не зависимо от них. Например, Г.И. Теодорович, не зависимо от типа фильтрующих пустот разделил все породы-коллекторы по величине коэффициента проницаемости на пять классов (от I до V).
vk.com/club152685050 | vk.com/id446425943
Вклассификации А.А. Ханина выделено шесть классов песчано-алевритовых коллекторов по их гранулометрическому составу, величине эффективной пористости и проницаемости.
Вклассификации И.А. Конюхова выделено три группы карбонатных коллекторов по качественной оценке их емкости, и восемь классов по количественным значениям проницаемости и эффективной пористости.
По вещественному (литологическому) составу горных пород выделяются две основные группы коллекторов: терригенная и карбонатная. Кроме них существуют коллекторы, связанные с глинистыми, вулканогенными, вулканогенно-осадочными, метаморфическими и магматическими породами, а также породами кор выветривания.
-Терригенные или песчано-алевритовые коллекторы. Коллекторы этого типа занимают основное место среди пород-коллекторов С ними связана весьма значительная часть запасов нефти и газа. ЁФС терригенных коллекторов определяются в основном структурой порового пространства, поэтому их часто называют гранулярными или межгранулярными.
-Карбонатные коллекторы. Они занимают существенное место среди пород-коллекторов. Причём значительная часть мировых запасов нефти и газа связана с трещинно-поровыми типами, небольшая с порово-трещинными и ничтожная с чисто трещинными.
Карбонатные породы являются полигенетической группой и по генезису первичных элементов могут быть хемогенными, органогенными, обломочными и смешанными. Часто в них присутствует терригенный материал, а иногда - пирокластический материал и аутигенные примеси в виде сульфатов, силикатов и других минералов.
-Глинистые коллекторы. Наиболее широко глинистые коллекторы распространены в центральной и южной части Западной Сибири, где они называются «баженитами. Там, на границе нижнего мела и верхней юры, в составе региональной покрышки развита баженовская свита, которая является промышленно нефтеносной.
У глинистых аргиллитоподобных коллекторов баженовского типа есть общее характерное свойство – высокое, в среднем 22,5 %, содержание органического вещества (ОВ) сапропелевого типа, наличие свободной кремнекислоты, в среднем 29,5 % и проявление сингенетичной нефтеносности.
Глинистые коллекторы Северного Кавказа – хадумиты, являются двухкомпонетными. Они состоят из глинистых минералов и кремнезема. Название дано по хадумской свите майкопской серии пород.
-Коллекторы магматических, метаморфических пород и их кор выветривания. Данные типы коллекторов связаны с фундаментом осадочных бассейнов (ОБ). В настоящее время на Земле известно порядка 450 промышленных месторождений нефти и газа, часть которых по своим запасам относится к крупным и уникальным. Большинство залежей - 40 %, и более 75 % запасов УВ, находящихся в фундаменте связано с кислыми породами: гранитами и гранитоидами.
Характерной особенностью нефтегазоносносности фундамента является то, что коллекторы и флюидоупоры в нём могут быть представлены одной и той же породой. Пустотное пространство породколлекторов имеет каверново-трещинный и трещинный типы, которые связаны с рядом вторичных процессов.
Часто кора выветривания и базальный горизонт осадочного чехла образуют единый природный резервуар. Например, в Ростовской области Азовское газовое месторождение связано с нижнемеловыми песчаниками и подстилаемой корой выветривания гнейсов докембрийского возраста.
6.По распространенности выделяют породы-коллекторы, которые имеют региональное, зональное и локальное распространение.
7.По толщине и выдержанности литологического состава выделяют коллекторы,
характеризующиеся выдержанностью или невыдержанностью толщин, литологического состава и фильтрационно-емкостных свойств.
vk.com/club152685050 | vk.com/id446425943
Экзаменационный билет №___14__
1.Классификация, номенклатура, изомерия и свойства углеводородов
2.Морфологические типы коллекторов
3.Типы коллекторов Беларуси
1.Классификация, номенклатура, изомерия и свойства углеводородов
Основными компонентами нефти являются углеводороды, которые представлены алкановыми, нафтеновыми, ароматическими и гибридными соединениями. В некоторых нефтях обнаружены этиленовые УВ или алкены.
-Алкановые УВ, они же метановые, парафиновые, алифатические УВ или алканы (Al)
соответствуют общей формуле CnH2n+2, где n – количество атомов углерода, которое может изменяться от одного до нескольких десятков.
Валканах имеются два типа химических связей: С–С и С–Н. Алканы кроме н-алканов содержат
иизо-алканы. При этом среди изо-алканов выделяются изопреноидные алканы, метильные группы СН3, которых имеют регулярное чередование.
Если атом углерода в молекуле связан с четырьмя различными атомами или атомными группами, то возможно существование двух соединений с одинаковой структурной формулой, но отличающихся пространственным строением. Молекулы таких соединений относятся друг к другу как предмет и его зеркальное изображение и являются оптическими изомерами или оптическими антиподами. Молекулы оптических изомеров несовместимы в пространстве (как левая и правая руки), в них отсутствует плоскость симметрии. Таким образом, оптическими изомерами называются пространственные изомеры, молекулы которых относятся между собой как предмет и несовместимое с ним зеркальное изображение. Оптические изомеры имеют одинаковые физические и химические свойства, но различаются отношением к поляризованному свету. Такие изомеры обладают оптической активностью (один из них вращает плоскость поляризованного света влево, а другой - на такой же угол вправо). Оптическая изомерия проявляется в органических веществах различных классов и играет очень важную роль в химии природных соединений.
Алканы, содержащие от одного до четырех атомов углерода (С1-С4), при нормальных условиях являются газами, от пяти до 15 (С5-С15) – жидкостями, больше 16 (С16) - твердыми веществами. При этом твердые алканы от С16-С32 называются парафинами, а от С32 и выше церезинами. Алканы обладают сильным токсическим и наркотическим действием, особенно нормальные алканы с короткой углеродной цепью.
-Нафтеновые УВ, они же циклановые, циклоалкановые, циклопарафиновые, полиметиленовые УВ или нафтены (Nf) состоят из замкнутых в цикл метиленовых групп СН2.
Простейший циклоалкан – циклопpопан С3Н6 – представляет собой плоский трехчленный карбоцикл
Молекулы циклоалканов содержат на два атома водорода меньше, чем соответствующие алканы. Напpимеp, бутан имеет фоpмулу С4Н10, а циклобутан – С4Н8. Поэтому общая формула циклоалканов СnH2n. Структурные формулы циклоалканов обычно изображаются сокращенно в виде правильных многоугольников с числом углов, соответствующих числу атомов углерода в цикле. Нафтены имеют моноциклическое би-, три- и полициклическое строение. В моноциклической молекуле может быть от трех до шести метиленовых групп. Нафтены С3-С4 являются газами, С5-С7 жидкостями, С8 и выше – твердыми веществами.
Ароматические УВ или арены (Аr) – это класс УВ, молекулы которых содержат устойчивые циклические группы атомов (бензольные ядра) с замкнутой системой сопряженных связей. Простейшие представители (одноядерные арены):бензол, толуол. Многоядерные арены: нафталин С10Н8, антрацен С14Н10 и др. Бензол С6Н6 – родоначальник ароматических углеводородов.
Арены, по сравнению с алканами и нафтенами содержатся в нефти, как правило, в меньших количествах, в основном от 10 до 25 %. Иногда их содержание достигает 50 %. Ароматические УВ являются наиболее токсическими компонентами нефтей. Например, при концентрации в воде всего 1% они убивают все водные растения.
vk.com/club152685050 | vk.com/id446425943
Гибридные УВ. В молекулах УВ гибридного (смешанного) строения находятся различные структурные элементы: ароматические кольца, нафтеновые циклы и алкильные цепи. Сочетание этих структурных элементов может быть самым разнообразным. Гибридное строение в нефтях имеет от 20 до 50 % высокомолекулярных УВ.
Этиленовые УВ или алкены, олефины. Это - непредельные (ненасыщенные) УВ с открытой цепью, в молекулах которых между углеродными атомами имеется одна двойная связь. Как и предельные УВ, алкены образуют свой гомологический ряд с общей формулой CnH2n. Простейшим представителем этого ряда и его родоначальником является этилен С2Н4 (Н2С=СН2).
Алкены обнаружены во многих образцах нефтей только в конце ХХ века в количестве до 8-10 %. Образуются они в результате радиолитического дегидрирования алканов при воздействии естественного радиоактивного излучения в недрах.
2.Морфологические типы коллекторов
По условиям фильтрации пластовых флюидов коллекторы делятся на простые и сложные
(смешанные). К простым коллекторам относятся поровые и чисто трещинные, а к смешанным - трещинно-поровые и порово-трещинные. Чисто трещинные и смешанные (трещинно-поровые и поровотрещинные) коллекторы часто называют просто трещинными, поскольку фильтрация в них обусловлена, главным образом, наличием трещин.
По условиям аккумуляции флюидов, которые определяются морфологией пустотного пространства коллекторы также делятся на простые и сложные (смешанные).
Впростых коллекторах пустотное пространство представлено следующими видами: порами,
кавернами, карстовыми полостями и трещинами.
Поровые коллекторы обычно связаны с терригенными породами – песчаниками и алевролитами и реже - с органогенными карбонатными породами. Остальные виды пустотного пространства - каверны, карстовые полости и трещины в основным вязаны с карбонатными коллекторами.
Чисто трещинные коллекторы встречаются редко. Образуются они за счет вторичной трещиноватости в плотных жестких и хрупких породах, минеральная часть которых практически лишена пористости.
Смешанное пустотное пространство характерно для карбонатных пород, где оно представлено сочетанием видов пустот, которые образуют следующие типы пустотного пространства: поровотрещинное, порово-каверновое, карстово-каверновое, порово-каверново-карстовое, поровостилолитовое. Трещинно-поровые коллекторы преимущественно связаны с карбонатными породами, пустотное пространство которых образовано, главным образом, межзерновыми порами и кавернами.
При характеристике типа коллектора основной вид пустот ставится в названии на последнее место.
По величине эффективной пористости коллекторы делятся на классы, как в зависимости от типа горных пород, так и не зависимо от них. П.П. Авдусин и М.А. Цветкова (1943) разделили терригенные коллекторы на пять классов (от А до Е, ёмкость – от большой до малой). Практическое значение имеют коллекторы первых четырех классов.
По величине коэффициента проницаемости коллекторы также делятся на классы, как в зависимости от типа горных пород или типа фильтрующих пустот, так и не зависимо от них. Например, Г.И. Теодорович, не зависимо от типа фильтрующих пустот разделил все породы-коллекторы по величине коэффициента проницаемости на пять классов (от I до V).
Вклассификации А.А. Ханина выделено шесть классов песчано-алевритовых коллекторов по их гранулометрическому составу, величине эффективной пористости и проницаемости.
Вклассификации И.А. Конюхова выделено три группы карбонатных коллекторов по качественной оценке их емкости, и восемь классов по количественным значениям проницаемости и эффективной пористости.
vk.com/club152685050 | vk.com/id446425943
По вещественному (литологическому) составу горных пород выделяются две основные группы коллекторов: терригенная и карбонатная. Кроме них существуют коллекторы, связанные с глинистыми, вулканогенными, вулканогенно-осадочными, метаморфическими и магматическими породами, а также породами кор выветривания.
-Терригенные или песчано-алевритовые коллекторы. Коллекторы этого типа занимают основное место среди пород-коллекторов С ними связана весьма значительная часть запасов нефти и газа. ЁФС терригенных коллекторов определяются в основном структурой порового пространства, поэтому их часто называют гранулярными или межгранулярными.
-Карбонатные коллекторы. Они занимают существенное место среди пород-коллекторов. Причём значительная часть мировых запасов нефти и газа связана с трещинно-поровыми типами, небольшая с порово-трещинными и ничтожная с чисто трещинными.
Карбонатные породы являются полигенетической группой и по генезису первичных элементов могут быть хемогенными, органогенными, обломочными и смешанными. Часто в них присутствует терригенный материал, а иногда - пирокластический материал и аутигенные примеси в виде сульфатов, силикатов и других минералов.
-Глинистые коллекторы. Наиболее широко глинистые коллекторы распространены в центральной и южной части Западной Сибири, где они называются «баженитами. Там, на границе нижнего мела и верхней юры, в составе региональной покрышки развита баженовская свита, которая является промышленно нефтеносной.
У глинистых аргиллитоподобных коллекторов баженовского типа есть общее характерное свойство – высокое, в среднем 22,5 %, содержание органического вещества (ОВ) сапропелевого типа, наличие свободной кремнекислоты, в среднем 29,5 % и проявление сингенетичной нефтеносности.
Глинистые коллекторы Северного Кавказа – хадумиты, являются двухкомпонетными. Они состоят из глинистых минералов и кремнезема. Название дано по хадумской свите майкопской серии пород.
-Коллекторы магматических, метаморфических пород и их кор выветривания. Данные типы коллекторов связаны с фундаментом осадочных бассейнов (ОБ). В настоящее время на Земле известно порядка 450 промышленных месторождений нефти и газа, часть которых по своим запасам относится к крупным и уникальным. Большинство залежей - 40 %, и более 75 % запасов УВ, находящихся в фундаменте связано с кислыми породами: гранитами и гранитоидами.
Характерной особенностью нефтегазоносносности фундамента является то, что коллекторы и флюидоупоры в нём могут быть представлены одной и той же породой. Пустотное пространство породколлекторов имеет каверново-трещинный и трещинный типы, которые связаны с рядом вторичных процессов.
Часто кора выветривания и базальный горизонт осадочного чехла образуют единый природный резервуар. Например, в Ростовской области Азовское газовое месторождение связано с нижнемеловыми песчаниками и подстилаемой корой выветривания гнейсов докембрийского возраста.
6.По распространенности выделяют породы-коллекторы, которые имеют региональное, зональное и локальное распространение.
7.По толщине и выдержанности литологического состава выделяют коллекторы,
характеризующиеся выдержанностью или невыдержанностью толщин, литологического состава и фильтрационно-емкостных свойств.
vk.com/club152685050 | vk.com/id446425943
Экзаменационный билет №___15__
1.Главные гомологические ряды и количество индивидуальных углеводородов, идентифицированных в нефтях 2. Время, продолжительность и скорость формирования залежей нефти и газа Методы определения
времени формирования залежей нефти и газа 3.Типы флюидоупоров Беларуси
2. Время, продолжительность и скорость формирования залежей нефти и газа Методы определения времени формирования залежей нефти и газа
Изучение вопросов времени, продолжительности и скорость формирования залежей нефти и газа имеет большое практическое и научное значение.
Под временем формирования залежей понимается период с момента поступления первых порций УВ в ловушку до её полного заполнения.
За начало образования залежей можно принять время возникновения ловушек, а установление времени конца формирования залежей вызывает большие трудности. В случае древнего заложения ловушки и её конседиментационного развития период существования выявленной залежи может оказаться весьма продолжительным. Кроме того, многие залежи испытали неоднократные поднятия и погружения во время которых происходило их переформирование.
При установлении времени начала и конца формирования залежей можно определить продолжительность их формирования.
При знании объёмов и продолжительности формирования залежей можно определить скорость, или интенсивность, их формирования. Она определяется как отношение геологических запасов нефти или газа в залежи к продолжительности их формирования, и выражается соответственно в тоннах или кубических метрах в год. Относительно скорости и продолжительности процесса формирования залежей нефти и газа в настоящее время существует три представления:
1)процесс формирования залежей является очень длительным и многоэтапным;
2)формирование залежей происходит достаточно быстро;
3)залежи формируются с высокими скоростями, сопоставимыми со скоростями отбора УВ при их добычи, или они формируются в течение исторического времени.
Первое представление появилось давно и связано с представлениями об очень низкой скорости генерации и миграции УВ. В настоящее время его развивают В.И. Ларин и И.С. Гутман. Они считают, что залежи нефти и газа формируются в течение отрезка времени, достигающего 100 млн. лет и более. При этом основным фактором формирования залежей является вертикальный диффузионный поток УВ.
Второе представление основано на расчётах, которые показывают, что процессы генерации и миграции нефти и газа могут протекать относительно быстро. Оно поддерживается большинством геологов нефтяников, придерживающихся органической теории происхождения УВ.
Расчеты, проведенные на примерах нефтяных залежей районов кайнозойской и современной складчатости (Калифорнии, побережья Мексиканского залива, Апшеронского полуострова, Румынии, Бирмы и Индонезии) показали, что продолжительность их формирования составляет от 78 тыс. до 3 млн. лет. Время формирования залежей в условиях данных районов определяется с наименьшими погрешностями, поскольку ловушки нефти и газа имеют молодой возраст.
Третье представление развивается как в рамках органической концепции, так и в рамках неорганической концепции происхождений нефти и газа. Процесс нефтегазонакопления здесь представляется геологически мгновенным, способным восполнять потери УВ из залежей в процессе их разработки. Данные представления основаны на фактах чрезвычайно большой скорости генерации УВ как за счёт органических, так и неорганических источников, и большой роли флюидодинамических процессов в вертикальной миграции УВ.
vk.com/club152685050 | vk.com/id446425943
Экзаменационный билет №___16__
1.Формы и типы рассеянного органического вещества
2.Изменение коллекторских свойств пород с глубиной
3. Принцип дифференциального улавливания нефти и газа
1.Формы и типы рассеянного органического вещества
На подстадии протокатагенеза, которая развивается после диагенеза и предшествует катагенезу, происходит конденсация и укрупнение молекул гуминовых и сапрогуминовых кислот и веществ. В результате они переходят в новую форму ОВ – кероген или нерастворимое ОВ (НОВ).
Кероген – это нерастворимая в органических растворителях, кислотах и щелочах, фракция ОВ. Её доля в ОВ осадочных пород составляет 80-90 %. Другая часть ОВ осадочных пород приходится на битумоиды.
Рассеянные формы керогена или НОВ прочно связаны с минеральной частью породы и отделяются от неё методом обогащения. При этом последовательно используют соляную и плавиковую (фтористоводородную - НF кислоту). Концентрат керогена представляет собой порошок коричневого или черного цвета, напоминающий растворимый кофе.
Классификации НОВ. НОВ или кероген классифицируется по разным принципам: 1) по условиям седиментации; 2) по фациально-генетическим признакам; 3) в зависимости от вклада в состав ОВ различных исходных молекулярных структур живого вещества (ЖВ); 4) в зависимости от изменения атомных отношений водорода к углероду (Н/С) и кислорода к углероду (О/С) и другим принципам.
1.В классификации ОВ по условиям седиментации выделяется автохтонное и аллохтонное ОВ.
Автохтонное ОВ образуется за счет биопродукции живого вещества той же среды, в которой формируется осадок, а аллохтонное ОВ формируется за счет биопродукции, поступающей в бассейн седиментации из другой среды. Например, в морских бассейнах аллохтонным является гумусовое ОВ, которое поступает с континентов с речным стоком и эоловыми выносами.
2.В классификации ОВ по фациально-генетическим признакам выделяется: сапропелевое, гумусовое, смешанное (сапропелево-гумусовое или гумусово-сапропелевое) и липтобиолитовое ОВ.
Сапропелевое ОВ образуется в областях морской седиментации и связано с преобразованием бактериями фито- и зоопланктона, а также бентоса. Молекулярные структуры ОВ этого типа возникают, главным образом, за счет липидов и аминокислот.
Гумусовое ОВ генетически связано с высшими растениями. Образуется оно в основном за счет углеводов и лигнина.
Липтобиолитовое ОВ как и гумусовое связано с высшими растениями, но образовано оно геохимически устойчивыми веществами высших растений – восками, смолами, кутикулой и пробковой тканью. Липтобиолитовое ОВ сильно отличается по химическому составу от остальной части гумусового ОВ и лежит ближе к сапропелевому ОВ. Однако оно мало распространено в природе и выделяется среди концентрированных форм ОВ.
3.В классификации ОВ в зависимости от вклада в его состав различных исходных биохимических структур ЖВ, Н.Б. Вассоевич и др. выделили алиновый и арконовый типы. Алиновое ОВ в этой классификации соответствует сапропелевому типу, а арконовое ОВ - гумусовому типу.
При этом алиновое ОВ делится на два подтипа: алфиновый и амикагиновый.
В основе алфинового ОВ лежат липиды, поэтому оно характеризуется наличием длинных алифатических цепей. ОВ этого подтипа характерно для горючих сланцев.
В основе амикагинового или алцинового ОВ лежат углеводно-аминокислотные комплексы. Это фитопланктонное ОВ, подвергшееся бактериальной переработке. Оно характерно для материковых окраин.
В основе арконового или аренового ОВ, находятся лигнино-целлюлозные молекулярные структуры высших растений, потому оно состоит в основном из конденсированных аренов.
vk.com/club152685050 | vk.com/id446425943
4.В геохимической классификации ОВ зависимости от изменения атомных отношений водорода
куглероду (Н/С) и кислорода к углероду (О/С) выделяется три геохимических типа керогена: I, II и III. Эта геохимическая классификация составлена Б. Тиссо, Д. Вельте (1981). Она широко используется зарубежом, а в последнее время и в России.
Кероген I типа имеет очень высокое содержание водорода, отношение Н/С достигает 1,8, и низкое содержание кислорода, отношение О/С менее 0,1. Кероген I типа сопоставим с алфиновым ОВ.
Кероген II типа имеет достаточно высокое содержание водорода и повышенное содержание кислорода. Он широко распространен среди нефтепроизводящих пород и сопоставим с амикагиновым ОВ.
Кероген III типа содержит мало водорода, отношение Н/С менее 1,0, и много кислорода, отношение О/С лежит в пределах 0,2-0,3. Кероген этого типа накапливается преимущественно в осадках прибрежно-морских и озёрных бассейнов, вблизи от источников сноса терригенного материала и сопоставим с гумусовым или арконовым ОВ.
2.Изменение коллекторских свойств пород с глубиной
Известно, что изменение ФЕС по разрезу осадочного чехла подчинено генетической закономерности. В начале, с увеличением глубины и ростом геостатического давления, они ухудшаются за счет изменения первичной пористости, вторичного минералообразования и цементации. Эти изменения достигают максимальных значений в так называемой критической зоне гравитационного уплотнения (КЗГУ), которая проявляется в разных регионах в различном интервале глубин. Ухудшению ФЕС особенно подвержены терригенные коллекторы.
Ниже КЗГУ коллекторские свойства горных пород начинают улучшаться за счет увеличения вторичной пористости. Главную роль при этом играют геодинамические процессы: тектонодинамические и флюидодинамические. Улучшение коллекторских свойств пород с глубиной происходит легче у карбонатных и других жестких и хрупких пород. Эти породы наиболее сильно подвержены трещинообразованию под воздействием тектонических напряжений и процессам катагенетического изменения.
Таким образом, улучшение ФЕС горных пород происходит в результате их растрескивания, выщелачивания и растворения карбонатного или карбонатно-глинистого цемента под воздействием тектонических напряжений и движения горячих агрессивных вод, насыщенных углекислым газом. Растворение приводит к повышению ФЕС только в случае выноса цемента, поэтому разрывные нарушения стимулируют улучшение коллекторских свойств.
3.Принцип дифференциального улавливания нефти и газа
Впроцессе миграции нефти и газа по структурному элементу, в пределах которого имеется воздымающаяся цепь ловушек, проявляется фазовая дифференциация УВ. Региональным элементом, содержащим цепь ловушек может быть антиклинальная зона, рифовые массивы. Принцип дифференциального улавливания основан на двух положениях.
Первое положение связано со способностью газа, вытеснять нефть из ловушки, которая была установлена В. Праттом в 1944 году и подтверждена В.П. Савченко в 1954 году. Поскольку плотность газа ниже плотности нефти, то газ, всплывая в нефтяной залежи, вытесняет её из ловушки.
Второе положение связано с закономерным уменьшением пластового давления и изменением соотношения пластового давления и давления насыщения по восстанию пласта-коллектора. В результате происходит высаливание нефти из воды и выделение газа из воды и нефти.

vk.com/club152685050 | vk.com/id446425943
Принцип дифференциального улавливания УВ для таких условий был одновременно высказан российским геологом С.П. Максимовым и канадским геологом В. Гассау. Обычно выделяется две схемы фазовой дифференциации залежей нефти и газа (рис. 23).
Первая схема осуществляется при одновременной, но раздельной струйной миграции нефти и газа. В этом случае образуется следующий последовательный ряд залежей: нижние ловушки заполняются газом, промежуточная - газом и нефтью, верхние ловушки нефтью (рис. 23, а). Если мигрирует только одна нефть, то в этом случае происходит дифференциация залежей по плотности нефти. Если УВ недостаточно для заполнения всех ловушек, то ловушки, расположенные выше будут «пустыми» (водоносными).
Рисунок 23 - Принципиальная схема дифференциального улавливания нефти и газа в последовательной цепи ловушек
Сторонники теории дифференциального улавливания допускают также возможность выдавливания из ловушки залежи тяжёлой нефти лёгкой нефтью. В этом случае по направлению миграции нефти
в цепи ловушек должна увеличиваться плотность нефти. Однако И.В. Высоцкий и В.И. Высоцкий (1986) указывают, что такое выдавливание не возможно, поскольку при контакте двух смешивающихся жидкостей происходит выравнивание их плотности. Кроме того, в этом случае асфальтены должны выпадать в осадок, что также способствует уменьшению плотности нефти. Наблюдаемое увеличение плотности нефти в залежах вверх по восстанию ловушек связано с действием гипергенных факторов.
Вторая схема реализуется при миграции нефти в струйной форме при давлении насыщения ниже пластового, то есть когда нефть недонасыщена газом. В этом случае нижние ловушки будут заполняться нефтью (см. рис. 23, б). При дальнейшей миграции и снижении пластового давления до значения давления насыщения газ начнет выделяться из нефти, и дальнейшее распределение УВ в ловушках пойдет по первой схеме (см. рис. 23, а).
Иногда выделяется третья схема фазовой дифференциации залежей, связанная с водорастворённой формой миграции УВ. Снижение температуры и давления при миграции воды приводит к выделению из неё нефти и газа в свободное состояние. Так как жидкие УВ растворяются в воде хуже, чем газообразные, то первой выделяется нефть, которая и заполняет первые нижние ловушки. По мере миграции воды вверх по восстанию пласта, наряду с жидкими УВ начинают выделяться и газообразные. Поэтому в следующей ловушке аккумулируется нефть и газ при различном соотношении их объёмов, а выше - только газ. Однако данная схема маловероятна из-за низкой растворимости жидких УВ в воде.
Распределение залежей нефти и газа в соответствии с принципами дифференциального улавливания представляет собой наиболее общую схему. Чаще процессы миграции и аккумуляции УВ протекают в более сложных условиях, которые меняются как во времени так в пространстве. Связано это с разным временем прохождения материнскими породами ГЗН и ГЗГ, а также наличием разных очагов генерации УВ. Кроме того, из-за проявления новейшей тектоники меняются направления и углы регионального наклона пластов, глубины залегания ловушек, вплоть до выведения пластов-коллекторов на поверхность, ловушки меняют объём или вовсе раскрываются. Одновременно изменяются и термобарические условия в залежах, происходит переформирование и разрушение залежей нефти и газа.
vk.com/club152685050 | vk.com/id446425943
Экзаменационный билет №___17__
1.Групповой состав органического вещества
2.Принципы классификации пород-флюидоупоров
3.Геохимия органического вещества пород и нефти в Беларуси
1.Групповой состав органического вещества
Живое вещество поглощает химические элементы из биосферы избирательно. Из 70 химических элементов, входящих в состав растительных и животных организмов выделяются четыре: кислород, углерод, водород и азот, то есть те же элементы, которые входят в компонентный состав нефтей.
Исходное ОВ, поступающее в осадки на седиментационном цикле круговорота углерода, образуется на континентах и в акваториях, то есть в океанах и морях. На континентах ОВ представлено в основном высшей растительностью, а в акваториях фито- и зоопланктоном, а также бентосом.
Биопродукция Земли состоит из органических и неорганических соединений. Неорганические соединения в основном представлены водой.
Органические соединения разделяются на биополимеры и биолипиды. Биополимеры представлены белками, нуклеиновыми кислотами, углеводами и лигнином.
Лигнин – это биоорганическое высокополимерное соединение, которое состоит из фенилпропениловых звеньев, типа С6С3, соединенных простыми эфирными связями. Лигнин образует каркасную или скелетную ткань высших растений и вызывает их одревеснение. Содержание лигнина в травах и мхах составляет от 8 до 20 %, в лиственных древесных породах достигает 20-30 %, а в хвойных породах - до 50 %.
К биолипидам относятся жиры или липиды, липоиды или жироподобные вещества и некоторые
пигменты.
Пигменты – это окрашенные соединения, которые содержатся в живом веществе в небольшом количестве, но играют значительную роль в его существовании. С геохимических позиций интересны желтые пигменты - каротиноиды, зеленые – хлорофиллы, и красные гемоглобин. Эти пигменты сохраняют основные черты своей молекулярной структуры при преобразовании ОВ в процессе литогенеза и обнаруживаются в нефти. Таким образом, они представляют собой важные для геохимии нефти вещества - хемофоссилии, или бирмаркеры.
ОВ, продуцируемое в континентальных и экваториальных экологических системах Земли, имеет различный компонентный состав. Для биопродукции континентальных систем характерно резкое преобладание углеводов и лигнина, а для океанских систем преобладание белков, углеводов и повышенное содержание липидов и липоидов. При этом лигнин в составе ОВ морского происхождения отсутствует.
Различный состав первичного ОВ морского и континентального происхождения обусловливает соответственно и различия в составе ОВ, преобразованного в диагенезе. Позже, в катагенезе это сказывается на качестве и количестве генерируемых разными типами ОВ жидких и газообразных УВ.