Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Ответы к Нефти и Газу экзаменационные билеты

.pdf
Скачиваний:
24
Добавлен:
17.08.2019
Размер:
1.38 Mб
Скачать

vk.com/club152685050 | vk.com/id446425943

2.Процесс первичной миграции нефти и газа. Современное состояние проблем.

Первичная миграция УВ представляет собой процесс десорбции (отрыва) микронефти и газов от рассеянного ОВ и минеральной части нефтегазоматеринских или нефтегазопроизводящих пород и их перемещение в породы-коллекторы. В литературе часто используются близкие, но более узкие понятия «эмиграция», или «эвакуация», под которыми понимается процесс перехода флюидов: микронефти, газов и поровых нефтегазонасыщенных вод из нефтегазопроизводящих пород в коллектор. Преобладающее направление первичной миграции флюидов – субвертикальное, в область меньших пластовых давлений. Микронефть - это наиболее подвижная, или миграционноспособная, часть битумоидов (аллохтонные битумоиды), содержащая до 70-90 % нефтяных УВ и 10-30 % смол и асфальтенов.

Нефтепроизводящими породами являются глинистые, глинисто-карбонатные, карбонатные и реже - кремнистые породы, которые при вступлении в главную зону нефтеобразования, характеризующуюся температурой от 70 до 170 ºС генерируют нефть.

Высокие концентрации РОВ сапропелевого типа от 8 до 20 % характерны для доманикитов, которые имеют также и местные названия: бажениты, менилиты и другие. Кроме ОВ доманикиты содержат примерно в равных отношениях глинистые минералы с преобладанием монтмориллонита, органогенный кремнезём, и карбонаты.

Процесс эмиграции в изучался многими исследователями, как в нашей стране (С.Л. Закс, В.А. Кудряков, В.Д. Ламтадзе, С.Г. Неручев), так и за рубежом (М. Пауэрс, Р. Пеле, Б. Тиссо, Г. Чилингар и), но из-за своей сложности он до сих пор плохо изучен.

Нефтегазопроизводящие породы, являясь тонкодисперсными, обладают высокой сорбционной способностью и высоким капиллярным давлением, что существенно осложняет эмиграцию микронефти, находящейся в рассеянном состоянии. Однако существуют различные процессы и факторы, создающие условия для её эмиграции. Связаны они в основном с внешними источниками энергии. Эмиграции микронефти в процессе погружения и литификации пород способствует рост: температуры; литостатического давления; градиентов пластовых давлений и концентраций подвижных жидких и газовых компонентов, а также - уменьшение сорбционной ёмкости материнских пород в процессе погружения и разнообразные геодинамические явления.

Снижение сорбционной способности материнских пород происходит за счёт преобразования их состава, структуры и увеличения температуры. В процессе погружения происходит снижение числа активных сорбционных центров в процессе гидрослюдизации глинистых минералов и их блокировки наиболее полярными кислыми компонентами РОВ, которыми являются смолисто-асфальтеновые вещества. С глубиной снижается полярность летучих продуктов катагенеза РОВ и глинистых минералов. Новые порции возрождённых (органогенных и дегидратационных) вод, газовых компонентов и низкокипящих УВ обладают повышенной растворяющей способностью и соответственно десорбирующими свойствами. В результате насыщения микронефти газами, особенно углекислым газом снижается её вязкость и увеличивается фазовая проницаемость. Например, при насыщении нефти углекислым газом на 20 % её вязкость снижается в 5-6 раз.

При быстром погружении ОПБ происходит неравновесное уплотнение глин. Его суть состоит в том, что в результате быстро растущего литостатического давления и уплотнения пород, седиментационные, а затем возрождённые (дегидратационные и органогенные) воды не успевают удалиться из материнских пород в породы-коллекторы. Такое явление характерно для глинистых толщ, в которых отсутствуют прослои песчаных отложений, выполняющих дренажную роль. Вода, не удалившаяся в коллекторы, препятствует уменьшению пористости при уплотнении глин. В результате поровые воды начинают воспринимать литостатическое давление, глины приобретают высокую пластичность и в них образуются аномально высокие поровые давления (АВПоД). Рост давления сопровождается увеличением пластовой температуры, которая вызывает объёмное расширение

vk.com/club152685050 | vk.com/id446425943

флюидов. Существенный вклад в возникновение АВПоД вносит генерация УВ, за счёт которой также происходит увеличение объёма флюидов. С.Г. Неручев и др. (1987), А. Перродон (1991) и другие исследователи считают её основной причиной образования аномально высоких пластовых давлений (АВПД). Кроме того, А. Перродон допускает возможность образования в зонах АВПД за счёт генерации УВ не только повышенной трещиноватости пород, но и тектонических разрывов.

На поле пластовых давлений в упруго деформируемой среде большое влияние оказывают новейшие тектонические движения, а также постоянно меняющиеся напряжения, вызванные действием различных геодинамических процессов. Они способствуют как образованию аномально высоких пластовых давлений (АВПД), так и их релаксации.

В проблеме первичной миграции УВ наиболее сложными являются вопросы миграции микронефти. Из всех предложенных различными исследователями механизмов и форм её миграции долгое время в литературе рассматривались следующие варианты:

1)эмиграция с водой, которая может происходить в виде истинных растворов, коллоидов и эмульсий;

2)эмиграция в свободном состоянии;

3)эмиграция в растворе сжатых газов (в газовой фазе);

4)эмиграция в диффузионной форме;

5)эмиграция за счёт геодинамических явлений;

6)стадийная эмиграция в зависимости от изменения

Однако преобразование ОВ и образование УВ происходит в течение ряда стадий литогенеза в связи с изменением термобарических и геохимических условий. Соответственно этому эмиграция УВ также происходит стадийно при различном соотношении разных форм, факторов и механизмов. Выделяется три стадии эмиграции УВ из глинистых нефтегазоматеринских пород, сменяющие друг друга с глубиной. Их литификация протекает наиболее длительно. На первой стадии первичной миграции, протекающей до ГЗН, эмиграция УВ происходит в истинном или мицеллярном водном растворе, на второй стадии микронефть эмигрирует в свободном состоянии, на третьей стадии эмиграция лёгких жидких УВ газов происходит также в свободном состоянии, но газовой фазе.

vk.com/club152685050 | vk.com/id446425943

Экзаменационный билет №___10__

1.Физико-химические свойства газов 2. Нефтематеринские толщи (свиты, формации и др термины) и их особенности

3.Нерешенные и дискуссионные вопросы геологии нефти и газа

1.Физико-химические свойства газов

Физические свойства природных газов имеют большое значение для изучения процессов миграции УВ, их фазовых превращений, формирования, разрушения и разработки залежей нефти и газа.

Состояние газа определяется тремя параметрами: давлением, температурой и плотностью. В качестве стандартных условий при термодинамических расчётах принимают температуру равную 0 °С и давление 0,1 МПа. При прочих расчётах температуру газов принимают равной 20 °С.

Абсолютная плотность газа (ρ) – это отношение массы сухого газа (m) к его объему (v): ρ = m / v, выражаемое в килограммах на кубический метр (кг/м3) или в граммах на кубический сантиметр (г/см3). Часто используется понятие об относительной плотности газов. Это отношение плотности газа к плотности воздуха, которое является безразмерной величиной. У метана она равна – 0,55, этана – 1,04,.

В общем, плотность газа зависит от его химического состава, молекулярной массы, давления и температуры. Она уменьшается с ростом температуры и растет с повышением давления и молекулярной массы.

Критические параметры и состояние. Возможность существования газа в пластовых условиях в различных формах определяется термобарическими параметрами, то есть абсолютными значениями и соотношением температуры и давления.

Критическая температура (Ткр) - это температура, при которой исчезают все различия между жидкостью и её паром и, следовательно, плотность жидкости и пара становится одинаковой. При температуре выше критической вещество может существовать только в газообразном состоянии. В этом случае газ нельзя превратить в жидкость без понижения температуры никаким увеличением давления.

Таким образом, газом называется вещество, находящееся в газообразном состоянии при температуре выше критической, а паром – вещество, находящееся в газообразном состоянии при температуре ниже критической. Следовательно, пар можно превратить в жидкость увеличением давления, а газ – нельзя.

Метан, азот, водород, кислород и инертные газы находятся в недрах при температуре выше критической, поэтому не могут превращаться в жидкое состояние. Пропан, бутан, этан, углекислый газ и сероводород могут находиться в пластовых условиях при температурах ниже критических, что создает возможность превращения их в жидкость. Жидкий углекислый газ обнаружен во включениях в минералах.

Давление насыщения (упругость водорастворенных газов) – это пластовое давление, при котором подземные воды насыщены газом до предела. В этом случае при снижении пластового давления газ начнет выделяться из жидкости в свободную фазу. Происходить это будет до тех пор, пока в жидкости вновь не установится равновесие между пластовым давлением и растворимостью газа при данных условиях.

Растворимость газа в жидкостях. В пластовой нефти и воде растворено огромное количество газа. Растворимость газа является его важнейшим свойством, которое определяет физические характеристики флюидных систем. Зависит она от состава и соотношения жидкостей и газа, а также от давления и температуры. При небольших температурах и давлениях, до 5 МПа, растворимость газов подчиняется закону Генри, по которому количество газа (Vг), растворенного при данной температуре в единице объема жидкости (Vж), прямо пропорционально давлению газа (p).

Объем газа, растворенный в пластовых условиях в единице объема или массе жидкости и измеренный в нормальных условиях, называют газонасыщенностью (Г). Газонасыщенность,

vk.com/club152685050 | vk.com/id446425943

выраженную в кубических метрах газа, содержащегося в 1 м3 или 1 т жидкости (м33 или м3/т)

называют также газовым фактором ф).

Растворимость газа в нефти. От количества газа, растворенного в пластовой нефти, зависят её вязкость, сжимаемость, термическое расширение, плотность.

Различные газы обладают разной растворимостью в нефтях, причем с уменьшением молекулярной массы газа его коэффициент растворимости снижается. Особенно плохо растворяется азот, затем метан. Хорошо растворяются в нефтях углекислый газ, этан и пропан. Большое значение для растворимости газов имеет состав нефтей. В легких метановых нефтях лучше растворяются гомологи метана, а в тяжелых нефтях лучше растворяется метан. Углеводородные газы хуже растворяются в нефтях с повышением температуры.

Растворимость газа в воде. Растворимость газовых компонентов в воде намного ниже, чем в нефти и зависит от состава газа, температуры, давления и минерализации воды. Наибольшей растворимостью обладают кислые газы (Н2S и СО2). С повышением температуры растворимость газов в воде вначале падает, достигая минимума у разных газов при 60-100 °С, а затем быстро растет, особенно при увеличении давления. С ростом минерализации воды растворимость уменьшается.

Растворимость нефти в газе. Испарение жидкостей в обычных изотермических условиях усиливается при понижении давления, а конденсация пара при повышении давления. При снижении температуры в изобарических условиях испарение понижается, а при повышении температуры увеличивается.

Однако когда природные газы находятся в пластовых условиях в околокритическом состоянии, то нефть начинает растворяться в газах, переходя в парообразное состояние. С ростом пластового давления испарение нефти увеличивается. В результае образуются конденсатные газы -

газоконденсаты (ГК) или газоконденсатные системы (ГКС). И, наоборот, при падении давления начинается конденсация паров нефти.

Таким образом, газоконденсаты – это пластовые газообразные углеводородные системы, содержащие нефть в растворенном парообразном состоянии.

Газосодержание горных пород. Горные породы имеют ГФ от тысячных долей единицы, до десятков кубических метров на тонну. Наибольшим газосодержанием характеризуются ископаемые угли. Их газоносность повышается с глубиной и ростом степени метаморфизма углей, за исключением антрацитов, и достигает у каменных углей значений 50 м3/т горючей массы.

Вязкость газа – это внутреннее трение, возникающее при движении газа. В отличие от жидкости, вязкость газа растет с уменьшением молекулярной массы и увеличением температуры и давления. Это объясняется увеличением скорости движения и силы соударения молекул. Газы имеют очень низкую вязкость, например, вязкость метана при стандартных условиях в 100 раз ниже вязкости воды и составляет около 0,01 мПа∙с. Низкая вязкость газа обусловливает его способность относительно быстро перемещаться в пористых и трещиноватых горных породах при перепаде давления.

Диффузия газа или проникновение его молекул в другие вещества возможна практически в любой среде и подчиняется закону Фика: диффузия происходит в направлении убывания концентрации вещества. Она обусловлена тепловым движением молекул и является одним из механизмов переноса вещества, в результате которого происходит естественное выравнивание его концентрации.

Скорость диффузии газа зависит от его свойств и концентрации, а также от свойств проницаемой среды: пористости, проницаемости, влагонасыщенности, структуры порового пространства и размера пор. Диффузия растет с повышением температуры и уменьшается с ростом молекулярной массы газа. Диффузия играет существенную роль при эмиграции УВ из нефтепроизводящих пород в коллекторы и обуславливает значительные потери газа из залежей, вплоть до их полного уничтожения.

Фильтрация газа или эффузия – это движение газа через пористую среду под влиянием перепада давления. Фильтрация газа также подчиняется закону Дарси.

vk.com/club152685050 | vk.com/id446425943

2. Нефтематеринские толщи (свиты, формации и др термины) и их особенности

Осадочные породы, содержащие ОВ, которое в катагенезе способно генерировать нефть и (или) газ, в количествах, достаточных для формирования при благоприятных условиях промышленных скоплений УВ являются нефте- и (или) газоматеринскими.

Основным показателем продуцирующих свойств пород служит удельная газо- и битумогенерация в единицах массы или объема. Удельный нефтематеринский потенциал определяется количеством нефти в миллиграммах на 1 г породы или в килограммах на 1 т (1 м3) породы, которое может образоваться за всё время её нахождения в зоне катагенеза. Газоматеринский потенциал оценивается количеством газа в кубических метрах на 1 т или 1 м3 породы. Масштабы генерации УВ определяются генетическим типом, степенью катагенетического преобразования и концентрацией ОВ в породе.

В настоящее время за минимальную концентрацию ОВ, способную обеспечить промышленную нефтеносность, принимают 0,4-0,5 % для глинистых пород и 0,1-0,2 % для карбонатных пород, при их достаточной толщине (Б.А. Соколов и др. 1998).

Б. Тиссо и Д. Вельте (1981) оценивают и классифицируют нефтематеринские породы по величине генетического потенциала в килограммах на тонну или в миллиграммах на грамм следующим образом:

-менее 2 – порода, не производящая нефть, но обладающая небольшим газовым потенциалом; -2-6 нефтематеринская порода с умеренным потенциалом; -более 6 - нефтематеринская порода с высоким потенциалом.

Нефтематеринские породы имеют три стадии развития: потенциально нефтематеринскую,

нефтепроизводящую и постнефтематеринскую.

vk.com/club152685050 | vk.com/id446425943

Экзаменационный билет №___11__

1.Химический состав газов нефтяных и газовых местоскоплений

2.Породы-коллекторы типы пустотного пространства пород

3.Нефтегеологическое районирование Беларуси

1.Химический состав газов нефтяных и газовых местоскоплений

Газонефтяные и нефтегазовые залежи являются двухфазными. Свободный газ в них залегает совместно с нефтью. При этом в нефтегазовых залежах газ занимает основой объём ловушки и располагается над нефтяной частью залежи, называемой нефтяной оторочкой. В газонефтяных залежах газ занимает меньший объём ловушки. Газовая часть такой залежи называется газовой шапкой, а добываемые газы называются попутными.

Попутные газы представляют собой смесь свободного газа газовой шапки и газа, растворенного в нефти - нефтяного газа. Их состав отличается от газов газовых залежей и зависит от состава, плотности нефти и растворимости в нефти индивидуальных газовых компонентов.

Вгазовых шапках метан обычно находится в меньших количествах по сравнению залежами сухих

игазоконденсатных газов. Газы газовых шапок отличаются также повышенным содержанием ТУВГ и паров жидких УВ, более тяжелых, чем гексан С6Н14. Иногда их суммарное содержание превышает содержание метана. Из ТУВГ в большинстве случаев преобладает пропан С3Н8.

Нередко в составе газов газовых шапок встречаются высокие концентрации неуглеводородных газов: азота, углекислого газа или сероводорода. При этом азот и углекислый газ могут резко преобладать.

Химический состав газов, растворенных в нефти. Газы, растворённые в нефти называются

нефтяными или попутными нефтяными. Нефтяной газ представляет собой смесь газо- и парообразных углеводородных и неуглеводородных компонентов, выделяющихся из пластовой нефти при её дегазации в газосепараторах в результате изменения давления и температуры.

Качественный состав попутных нефтяных газов не отличается от природных свободных газов. Они содержат метан, его гомологи, азот, углекислый газ, сероводород, гелий, аргон и другие компоненты. Однако количественное отличие часто бывает весьма существенным. Содержание метана в них может не превышать 20-30 %, зато значительно больше его гомологов, включая высшие УВ. Поэтому нефтяные газы относятся к жирным. Среди газообразных и парообразных УВ часто преобладают пропан и бутан.

Состав углеводородной части нефтяных газов тесно связан с составом нефти. Легкие метановые нефти сопровождаются жирными газами, состоящими на 20-80 % из гомологов метана. Тяжелые нефти наоборот, содержат преимущественно метан. Из неуглеводородных газов существенное значение имеют углекислый газ, сероводород и особенно азот, который может быть преобладающим компонентом.

vk.com/club152685050 | vk.com/id446425943

2.Породы-коллекторы типы пустотного пространства пород

Коллекторами называются породы, обладающие способностью к аккумуляции и фильтрации нефти, газа и воды. Эти процессы возможны, если порода имеет пустотное пространство, которое может быть представлено порами, кавернами и трещинами , объединенными в общую систему каналов.

Рисунок 13 – Виды пустотного пространства пород:

а – хорошо отсортированная высокопористая порода; б - плохо отсортированная низкопористая порода; в – хорошо отсортированная порода с пористыми зёрнами и очень высокой пористостью; г – хорошо отсортированная, но

сцементированная порода пониженной пористости; д – порода с порами растворения; е – порода стрещинной пористостью

Поры – это пустоты между минеральными зернами и обломками пород. Они имеют размеры менее 1 мм и заключены в жестком каркасе породы, называемом матрицей.

Каверны – это пустоты в горных породах размером более 1 мм. Трещины – это совокупность разрывов сплошности породы.

По размерам поры и трещины разделяются на три категории: 1) некапиллярные или сверхкапиллярные, 2) капиллярные и 3) субкапиллярные или ультракапиллярные.

Кнекапиллярным относятся поры диаметром более 0,5 мм и трещины шириной более 0,25 мм. Капиллярными являются поры от 0,5 до 0,0002 мм и трещины от 0,25 до 0,0001 мм.

Ксубкапиллярным относятся поры менее 0,0002 мм и трещины менее 0,0001 мм.

Такое разделение пустотного пространства пород связано с тем, что в некапиллярных пустотах содержатся свободные флюиды (вода, нефть и газ), движение которых находится под действием гравитационных сил или перепада давления.

Вкапиллярных пустотах также содержатся свободные флюиды, но их движение находится под действием капиллярных или менисковых сил, а также гравитационных сил или перепада давления. Поскольку движение нефти и газа происходит в водонасыщенных коллекторах, то в капиллярных пустотах знак капиллярного давления на разделе фаз зависит и от таких свойств пород как гидрофильность или гидрофобность.

Всубкапиллярных пустотах находятся физически связанные или адсорбированные флюиды. Эти флюиды крепко связаны с поверхностью минеральных частиц силами межмолекулярного притяжения и полностью закрывают просветы порово-трещинного пространства. Поэтому субкапиллярные пустоты для жидкостей и газов практически не проницаемы. Однако при высоких температурах и давлениях, когда капиллярные эффекты сводятся к минимуму или исчезают, движение флюидов по этим пустотам становиться возможным.

Поры и трещины могут быть первичными или сингенетичными и вторичными или эпигенетичными.

Первичные пустоты образуются между зернами обломочных и некоторых карбонатных пород, одновременно с их формированием и обусловлены текстурными особенностями этих пород.

Вторичные пустоты образуются в результате катагенных процессов, что особенно характерно для карбонатных пород, а также в результате тектонических и гипергенных процессов.

vk.com/club152685050 | vk.com/id446425943

Экзаменационный билет №___12__

1.Твердые нафтиды продукты природного преобразования нефти; классификация, состав, свойства 2.Ёмкостно-фильтрационные свойства пород 3.Концепция неорганического происхождения нефти

2.Ёмкостно-фильтрационные свойства пород

Ёмкостно-фильтрационные свойства пород. Основными физическими параметрами, которые определяют ёмкостно-фильтрационные свойства (ЁФС) коллекторов, являются пористость, проницаемость и водонасыщеность.

Пористость горных пород. Пористость породы – это её свойство, которое определяет ёмкость породы. Она представляет собой отношение объема всех пустот к общему объему породы. Различают три вида пористости: общую, открытую и эффективную.

Общая (абсолютная, полная, физическая) пористость – это суммарный объем всех пор, каверн и трещин. Коэффициентом общей пористости кп соответственно называется отношение суммарного объема всех пустот vп к общему объему породы v:

Открытая пористость – это объем всех пустот, сообщающихся между собой. Она всегда меньше общей пористости, на величину объема изолированных или замкнутых пустот. Коэффициентом открытой пористости соответственно называется отношение объема сообщающихся пустот к общему объему породы.

Эффективная (динамическая, полезная) пористость. Нефть и газ движутся не по всем открытым пустотам, а лишь по некапиллярным и достаточно крупным капиллярным пустотам. Таким образом, эффективная пористость – это совокупность пустот горной породы, участвующих в процессе фильтрации и из которых нефть может быть извлечена при разработке залежи.

Величина пористости зависит от формы и степени окатанности зерен, характера их взаимного расположения (укладки) и наличия цемента, и не зависит от размера частиц, если порода состоит из одинаковых обломков. Таким образом, коллекторские свойства породы определяются формой и характером пустот.

Пористость осадочных пород меняется в широких пределах. В несцементированных песках общая пористость достигает 45 %, а открытая – 40 %, у глин пористость лежит в пределах 45-50 %. Нижний предел пористости у нефтеносных песчаников обычно составляет 6-8 %. При меньшем значении они теряют коллекторские свойства.

Проницаемость горных пород. Если пористость обусловливает ёмкостные свойства коллектора, то проницаемость - его пропускную способность и, следовательно - коэффициент нефтеотдачи пласта и производительность эксплуатационных скважин. Различие этих параметров характеризует такой пример. Пористость глин может превышать пористость песков, однако глины практически лишены проницаемости, поскольку их пористость образована тонкими субкапиллярными порами. Вследствие этого они не могут пропускать и отдавать содержащиеся в них флюиды.

Для оценки проницаемости горных пород используют линейный закон фильтрации Дарси, согласно которому скорость фильтрации жидкости в пористой среде пропорциональна градиенту давления и обратно пропорциональна динамической вязкости:

Таким образом в Международной системе СИ за единицу проницаемости в 1 м2 принимается проницаемость пористой среды, в которой при фильтрации через её образец площадью поперечного сечения 1 м2 и длиной 1 м при перепаде давления 1 Па расход жидкости вязкостью 1 Па·с составляет 1 м3/с.

Проницаемость зависит, прежде всего, от структуры порового пространства: от размера и конфигурации пор, величины зерен, от плотности укладки и взаимного расположения частиц, от

vk.com/club152685050 | vk.com/id446425943

трещиноватости пород и других факторов. По характеру проницаемость делится на межзерновую и трещинную.

Различают следующие виды проницаемости: абсолютную, эффективную и относительную.

Абсолютная (общая, физическая) проницаемость характеризует физические свойства породы и определяется экспериментально объемным расходом газа или не взаимодействующей с минеральным скелетом однородной жидкости, при условии полного насыщения открытого порового пространства горной породы данным газом или жидкостью.

Эффективная (фазовая) проницаемость. Обычно пустотное пространство содержит двухили трёхфазную систему: нефть – вода, газ – вода, газ – нефть, газ – нефть – вода. Каждый из этих флюидов оказывает воздействие на фильтрацию других. Следовательно, фазовая проницаемость отражает способность породы пропускать через себя один флюид в присутствии других. Поэтому она всегда меньше абсолютной проницаемости.

Фазовая проницаемость зависит от их физико-химических свойств отдельных флюидов, температуры, давления и количественного соотношения разных флюидов. Поэтому с уменьшением количества нефти в залежи, при её разработке, фазовая проницаемость нефти падает.

Относительная проницаемость определяется отношением эффективной проницаемости к абсолютной и выражается безразмерной величиной меньше единицы.

Водонасыщенность. При формировании залежи часть воды остаётся в пустотном пространстве коллектора. Эта вода, содержащаяся вместе с нефтью или газом в залежи, называется остаточной водой.

Количество остаточной воды в залежах зависит от ФЁС пород: чем меньше размер пустот и проницаемость коллекторов, тем её больше.

Таким образом, водонасыщенность или коэффициент водонасыщенности характеризует содержание пластовой воды в коллекторе. Коэффициент водонасыщенности kв измеряется отношением объема открытых пор породы, занятых водой Vв, к общему объему пор породы Vп:

vk.com/club152685050 | vk.com/id446425943

3.Концепция неорганического происхождения нефти

Неорганические концепции опираются на следующие факты.

1.Установленное наличие радикалов, углеродистых соединений и УВ в газо-пылевых облаках межзвёздной среды, в атмосферах Юпитера и спутника Сатурна Титана. Наличие метана в атмосферах планет-гигантов Юпитера, Сатурна, Урана и Нептуна.

2.Наличие битумоподобных веществ в метеоритах, в составе которых присут-ствуют н-алканы, изопреноиды (пристан и фитан), порфирины, а также углеводы, аминокислоты, жирные кислоты, и даже оптически активные вещества. Среднее со-держание ОВ в углистых хондритах достигает 5 %.

3.Присутствие углеродистых соединений, а также водорода, окиси углерода, спиртов, метана и некоторых, более сложных УВ в продуктах магматизма мантийно-го происхождения, в гидротермальных системах современного и древнего вулканиз-ма.

4.Результаты термодинамических теоретических расчётов, указывающие на возможность существования метана и тяжелых УВ в условиях мантии Земли.

5.Результаты лабораторных экспериментов по синтезу УВ из неорганических компонентов (мрамора, кальцита, вюстита FеО и дистиллированной воды) при давле-ниях и температурах, соответствующих условиям верхней мантии.

6.Восполнение запасов УВ во многих залежах в процессе их разработки, то есть существование месторождений с самовоспроизводящимися запасами.

7.Установленные в разных регионах увеличения дебитов скважин, вплоть до фонтанирования после их различных простоев и землетрясений.

8.Молодой кайнозойский возраст многих залежей природного газа и нефти древних платформ, не согласующийся с возрастом вмещающих пород

9.Наличие уникальных и крупных по запасам месторождений нефти и газа в кристаллических породах фундамента, а также следы присутствия УВ в извержен-ных, метаморфических и метасоматических породах.