Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на ГОСЫ!!!!!.doc
Скачиваний:
11
Добавлен:
17.08.2019
Размер:
1.12 Mб
Скачать

41. Поняття регресії. Види регресій.

Математическая постановка задачи регрессии заключается в следующем. Зависимость величины (числового значения) определенного свойства случайного процесса или физического явления Y от другого переменного свойства или параметра Х, которое в общем случае также может относиться к случайной величине, зарегистрирована на множестве точек xk множеством значений yk, при этом в каждой точке зарегистрированные значения yk и xk отображают действительные значения Y(xk) со случайной погрешностью k, распределенной, как правило, по нормальному закону. По совокупности значений yk требуется подобрать такую функцию f(xk, a0, a1, … , an), которой зависимость Y(x) отображалась бы с минимальной погрешностью

Условное математическое ожидание M(Y|X=x) случайной переменной Y, рассматриваемое как функция x, т.е. M(Y|X=x)=f(x), называется функцией регрессии случайной переменной Y относительно X (или функцией регрессииY по X). Точно также условное математическое ожидание M(X|Y=y), случайной переменной X, т.е. M(X|Y=y)=f(x), называется функцией регрессии случайной переменной X относительно Y (или функцией регрессииX по Y).

Строго регрессионную зависимость можно определить следующим образом. Пусть Y, X1,X2,...,Xp — случайные величины с заданным совместным распределением вероятностей. Если для каждого набора значений X1 = x1,X2 = x2,...,Xp = xp определено условное математическое ожидание

y(x1,x2,...,xp) = E(Y | X1 = x1,X2 = x2,...,Xp = xp), то функция y(x1,x2,...,xp) называется регрессией величины Y по величинам X1,X2,...,Xp, а ее график — линией регрессии Y по X1,X2,...,Xp, или уравнением регрессии.

Зависимость Y от X1,X2,...,Xp проявляется в изменении средних значений Y при изменении X1,X2,...,Xp. Хотя при каждом фиксированном наборе значений X1 = x1,X2 = x2,...,Xp = xp величина Y остается случайной величиной с определенным рассеянием.

Для выяснения вопроса, насколько точно регрессионный анализ оценивает изменение Y при изменении X1,X2,...,Xp, используется средняя величина дисперсии Y при разных наборах значений X1,X2,...,Xp (фактически речь идет о мере рассеяния зависимой переменной вокруг линии регрессии).

Становится очевидным, что функция регрессии имеет важное значение при статистическом анализе зависимостей между переменными и может бать использована для прогнозирования одной из случайных переменных, если известно значение другой случайной переменной. Точность такого прогноза определяется дисперсией условного распределения.

Линейная регрессия является статистическим инструментом, используемым для прогнозирования будущих цен исходя из прошлых данных, и обычно применяется, чтобы определить, когда цены являются перегретыми. Используется метод наименьшего квадрата для построения "наиболее подходящей" прямой линии через ряд точек ценовых значений. Ценовыми точками, используемыми в качестве входных данных, может быть любое из следующих значений: открытие, закрытие, максимум, минимум, (максимум+минимум)/2, (максимум+минимум+закрытие)/3, (открытие+максимум+минимум+закрытие)/4, % изменения или (открытие+закрытие)/2. Эти данные могут быть предварительно произвольно сглажены перед построением наиболее подходящей линии. Если сглаживание не желательно, то просто выбирается период сглаживания равный 1.

Нелинейная регрессия – если между экономическими явлениями существуют соотношения, то они выражаются с помощью соответствующих нелинейных функций.

Различают два класса нелинейных регрессий:

- Регрессии, нелинейные относительно включенных в аналіз объясняющих переменных, но линейные по оцениваемым параметрам;

- Регрессии, нелинейные по оцениваемым параметрам.

Множественная регрессия может дать хороший результат при моделировании, только лишь в том случае, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь.

Включение в уравнение множественной регрессии того или иного набора факторов связано прежде всего с представлением исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями.