
- •Содержание
- •Тема 1. Планирование, программирование и прогнозирование как формы государственного регулирования 6
- •Тема 2. Методологические основы планирования и прогнозирования 36
- •Тема 1. Планирование, программирование и прогнозирование как формы государственного регулирования Лекция 1
- •Понятие, сущность и виды общегосударственного планирования
- •Программирование как форма государственного регулирования экономики
- •Прогнозирование в системе государственного регулирования экономики
- •Система программных и прогнозных документов, используемых в государственном регулировании экономики Республики Беларусь
- •Контрольные вопросы
- •Тема 2. Методологические основы планирования и прогнозирования Лекция 2
- •Понятие и основные элементы методологии планирования и прогнозирования
- •Основные методологические принципы планирования
- •Основополагающие подходы и принципы прогнозирования
- •Система показателей, используемых в планировании и прогнозировании
- •Информационное обеспечение процессов прогнозирования и планирования
- •Экономический анализ, его содержание и место в системе планирования и прогнозирования
- •Контрольные вопросы
- •Тема 3. Экспертные (интуитивные) методы прогнозирования Лекция 3
- •Области применения и общая схема работ по разработке экспертного прогноза
- •Поиск и отбор экспертов
- •Опрос экспертов
- •Обработка количественных ответов экспертов
- •Методы экспертного прогнозирования
- •Контрольные вопросы
- •Тема 4. Прогнозирование случайной величины по выборке значений. Лекция 4
- •Случайная переменная и общая схема прогнозирования по выборке
- •Предварительный анализ данных.
- •Прогнозирование ожидаемого значения случайной величины.
- •Оценка точности прогнозирования случайной величины.
- •Контрольные вопросы
- •Тема 5. Прогнозирование с использованием регрессионной зависимости Лекция 5
- •Общая схема прогнозирования с использованием регрессионной зависимости
- •Оценка параметров уравнения регрессии
- •Проверка значимости уравнения регрессии
- •Контрольные вопросы
- •Тема 6. Прогнозирование временных рядов Лекция 6
- •Определение сезонной составляющей временного ряда
- •Аддитивная модель
- •Мультипликативная модель
- •Определение тенденции временного ряда
- •Прогнозирование случайной составляющей
- •Контрольные вопросы
- •Тема 7. Методы планирования Лекция 7
- •Балансовый метод в планировании
- •Нормативный метод планирования
- •Программно-целевой метод
- •Планирование с использованием оптимизационных моделей
- •Контрольные вопросы
- •Тема 8. Практика планирования и прогнозирования Важнейших сфер экономики Лекция 8
- •Планирование и прогнозирование экономического развития и экономического роста
- •Планирование и прогнозирование инвестиционной деятельности
- •Планирование и прогнозирование малого предпринимательства
- •Планирование и прогнозирование отраслей промышленности
- •Планирование и прогнозирование апк
- •Контрольные вопросы
- •Экзаменационные вопросы
- •Литература
- •220007, Г. Минск, ул. Московская, 17.
Определение тенденции временного ряда
После того как из исходного временного ряда исключены сезонные колебания, определение тенденции временного ряда осуществляется традиционным способом. Выбирается вид зависимости для тенденции (линейная или нелинейная) и далее методом наименьших квадратов определяются коэффициенты регрессионного уравнения.
При этом благодаря тому, что временной ряд представляет собой упорядоченную по независимой переменной последовательность значений с постоянным шагом изменения, появляются дополнительные возможности по решению задачи выбора наиболее подходящего вида тенденции. Для этих целей может быть использовано сглаживание исследуемого ряда без сезонных колебаний скользящими средними с различными интервалами сглаживания. Чем больше интервал сглаживания, тем более гладкой становится сглаженная кривая и тем более очевидным становится наиболее подходящий закон для тенденции. Но при этом сглаженный ряд становится все более коротким (число точек, равное периоду сглаживания пропадает) и тем больше сглаженная кривая отрывается от исходного ряда.
Помимо визуального подбора могут применяться и различные аналитические методы.
Прогнозные значения
переменной
определяются:
для аддитивной
модели
;
для мультипликативной
модели
.
Прогнозирование случайной составляющей
После того как
построена прогнозная модель, включающая
тенденцию и сезонные колебания необходимо
найти и проанализировать остатки
для аддитивной модели и
для мультипликативной модели. Если
построение прогнозной модели выполнено
без ошибок и для исходных данных не
характерно влияние предшествующих
значений на последующие (явление
авторегресии), то остатки должны
представлять собой стационарный
временной ряд. Стационарный временной
ряд – это ряд значения, которого
являются случайной величиной, т.е.
средняя и дисперсия такого ряда на
длительном промежутке времени остаются
неизменными. Применительно к остаткам
это означает, что их график во времени
представляет собой облако точек,
расположенных симметрично относительно
оси абсцисс, границы этого облака
параллельны оси и между точками не
наблюдаются какие либо закономерности
в их появлении.
Близость остатков к стационарному временному ряду свидетельствует о том, что кардинальное улучшение прогнозной модели уже не возможно, но, тем не менее, несколько повысить точность прогнозирования возможно за счет прогнозирования самих остатков. Наиболее просто прогнозировать остатки можно двумя способами – с помощью скользящей средней и с помощью экспоненциально взвешенной средней.
При прогнозировании
с помощью скользящей средней прогнозное
значение остатка (отклонения прогнозного
значения
от
его будущего фактического значения
)
осуществляется по формуле:
где: остатки на предыдущих шагах от t-n+1 до t.
Таким образом, в этом случае используются не центральные скользящие средние, а концевые скользящие средние, т.е. средние, рассчитываемые по текущей точке и n предыдущих точек. Чем меньшее число точек использовано для расчета скользящей средней, тем сильнее прогноз реагирует на последние значения (на последние ошибки).
При прогнозировании с помощью экспоненциально взвешенной средней прогнозное значение остатка определяется не на основании n последних точек, а по всем предшествующим точкам, но в этом случае вес этих точек убывает по экспоненциальной зависимости. Одна из формул для подсчета экспоненциально взвешенной средней имеет вид:
где: - параметр сглаживания, определяющий скорость с которой уменьшается вес остатков для предыдущих точек по мере их удаления к началу ряда.
Обычно параметр сглаживания выбирается в пределах от 0.05 0.3. Чем большее значение параметра сглаживания, тем сильнее прогноз реагирует на последние изменения. Наиболее часто его выбирают равным 0.2, что примерно равноценно скользящей средней по 9 точкам.
Прогнозирование с помощью скользящей средней и экспоненциально взвешенной средней дают примерно одинаковые результаты, но прогнозирование с помощью экспоненциально взвешенной средней лучше работает в ситуациях когда ряд не до конца стационарен, т.е. нам не удалось учесть в прогнозной модели все тенденции. Как правило прогнозирование с использованием не только тенденции и сезонной составляющей, но и на прогноз остатка позволяет несколько уменьшить дисперсию ошибок прогнозирования. Прогнозные уравнения при этом будут иметь вид:
-
для аддитивной модели и
-
для мультипликативной модели.