Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
РАСЧЕТ h-ПАРАМЕТРОВ.doc
Скачиваний:
1
Добавлен:
16.08.2019
Размер:
144.9 Кб
Скачать

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Саратовский государственный технический университет»

Кафедра «Электротехника и электроника»

ПАРАМЕТРЫ СХЕМ ЗАМЕЩЕНИЯ БИПОЛЯРНОГО ТРАНЗИСТОРА И МЕТОДИКА ИХ РАСЧЕТА

1. Введение.

В учебных планах по курсу «Электроника» предусматривается выполнение работы по расчету параметров биполярного транзистора. В настоящих указаниях изложена методика этих расчетов.

Биполярный транзистор представляет собой полупроводниковый прибор с двумя p-n переходами и тремя электродами (эмиттер, база и коллектор). Переходы образуются тремя слоями с чередующимися типами проводимости, как показано на рис.1. В зависимости от порядка чередования этих слоев различают два типа транзистора: p-n-p и n-p-n. На рис.1 приведены их схемные обозначения.

Рис .1. Схемы структуры биполярных транзисторов

типа n-p-n и p-n-p и их схемные обозначения

В настоящих указаниях методика расчета изложена для случая включения биполярного транзистора по схеме «с общим эмиттером», которая нашла широкое применение. В этой схеме, приведенной на рис.2, эмиттер входит в состав, как входной, так и выходной цепей. Входным током является базовый ток, входным напряжением является напряжение база-эмиттер. Выходным током является коллекторный ток, выходным напряжением является напряжение коллектор-эмиттер. На рис.2 показана схема включения транзистора типа n-p-n с указанием полярности напряжений, подаваемых к электрода. В случае транзистора типа p-n-p полярность напряжений должна быть изменена.

Рис. 2. Схема включения биполярного транзистора типа

n-p-n с общим эмиттером

2. Схемы замещения биполярного транзистора

При расчетах электрических цепей с транзисторами реальный прибор заменяется схемой замещения, в которой транзистор представляется в виде активного четырехполюсника. Возможны две схемы замещения транзистора: бесструктурная и структурная, в которой отражены физические связи между ее элементами. В обоих случаях полагается линейная связь между токами и напряжениями в приборе. Такой подход возможен, когда транзистор работает при открытом эмиттерном переходе и закрытом коллекторном переходе, а значения его токов и напряжений не выходят за пределы рабочей области на выходной характеристике.

Рис. 3. Бесструктурная схема замещения биполярного транзистора

На рис.3 приведена бесструктурная схема замещения биполярного транзистора. Поскольку электрический режим прибора в схеме ОЭ определяется входным током IБ и выходным напряжением U , четырехполюсник схемы замещения описывается системой уравнений типа Н. При этом вместо значений токов и напряжений в уравнениях используются приращения значений этих параметров относительной соответствующих величин, находящихся внутри рабочей области. Таким образом, в случае бесструктурной схемы значения приращений токов и напряжений биполярного транзистора связываются через h-параметры уравнениями

Δ U = h Δ I Б + h Δ U , (1)

Δ I = h Δ I Б + h Δ U . (2)

Из соотношения (1) при Δ U = 0 следует

h = , (3)

а при Δ IБ = 0

h = . (4)

Аналогичным образом из соотношения (2) можно получить

h = , (5)

h = . (6)

Согласно соотношениям (3) – (6)

h является входным сопротивлением транзистора при постоянном значении напряжения U ;

h - коэффициент обратной связи по напряжению;

h - коэффициент передачи тока в схеме ОЭ, характеризующий усилительные свойства транзистора при постоянном значении напряжения U ;

h - выходная проводимость транзистора при постоянном токе базы.

Структурная схема замещения транзистора можно представить в виде Т-образной схемы. Такая схема для случая включения транзистора с ОЭ приведена на рис.4, где приращения токов и напряжений обозначены как iБ, iК, uБЭ, uКЭ.

Рис. 4. Бесструктурная схема замещения биполярного транзистора

Левая часть этой эквивалентной схемы транзистора отражает эмиттерный переход, находящийся в открытом состоянии. Резистор rЭ представляет собой сопротивление открытого перехода, величина которого невелика и лежит в пределах от единиц до нескольких десятков Ом. Резистор rБ представляет сопротивление базового слоя, величина которого как правило составляет 100-500 Ом. Им по существу определяется входное сопротив-ление прибора, поскольку величина сопротивления rЭ весьма мала. Правая часть схемы рис.4 отражает коллекторный переход. Он представляется параллельным соединением сопротивления rК(Э) и барьерной емкости коллекторного перехода СК. Кроме того, параллельно им включен источник тока βiБ, отражающий факт переноса рабочих носителей заряда из эмиттерного слоя в коллекторный слой. На низких частотах емкостное сопротивление велико и шунтирующим действием емкости СК на источник тока βiБ можно пренебречь. Поэтому подключение емкости СК на рис.4 обозначено пунктиром.

Согласно эквивалентной схеме рис.4 на низких частотах с учетом малой величины сопротивления rЭ приращение коллекторного тока определяется соотношением

из которого следует, что с учетом (5)

h = ,

а с учетом (6)

r = .

Поскольку коллекторный переход транзистора закрыт, его сопротивле-ние очень велико. Поэтому величина параметра h22 имеет порядок 10-4 См. Величина параметра h21 обычно составляет несколько десятков.

Таким образом значения параметров rб, rк(э) и  структурной схемы замещения транзистора определяются, если известны значения параметров h11, h21 и h22 бесструктурной схемы замещения.