
- •1.1.Регистрация и хранение измерительной информации. Интерполяционная формула Лагранжа.
- •1.2.Основные принципы построения автоматизированных си и контроля.
- •1.3.Государственная система обеспечения единства измерений (гси).
- •11.1.Согласование сигнала с каналом связи. Теорема Шеннона с предельной пропускной способностью канала.
- •11.2 Основные цели и объекты сертификации. Термины и определения в области сертификации продукции. Защита прав потребителя.
- •Объекты сертификации:
- •11.3 Калибровка си. Организация и порядок проведения
- •12.1 Полные и динамические характеристики си
- •12.2Функция преобразования и ее числовые характеристики.
- •12.3 Органы и службы стандартизации
- •13.1 Стационарные и нестационарные режимы работы средств измерений.
- •13.2 Метрологическое обеспечение. Основные цели и задачи.
- •13.3 Построение, содержание и изложение стандартов. Информация о документах по стандартизации.
- •14.1 Режимы работы средств измерений. Установившийся режим. Переходный режим
- •14.2 Управление качеством на этапе производства. Метод Тагути.
- •Особенности метода
- •Достоинства
- •Недостатки
- •Ожидаемый результат
- •14.3 Стандартизация технической документации. Основные межотраслевые системы, их состав и общая характеристика.
- •15.1.Нормируемые метрологические характеристики си. Примеры.
- •15.2 Гсс рф. Основные стандарты. Общие положения.
- •15.3.Объекты и компоненты мо. Производство как объект мо. Особенности мо на различных стадиях производства.
- •16.2 Автоматизированные средства измерений с одно- и двукратным сравнением
- •Средства измерений с двукратным сравнением
- •16.3. Международная стандартизация. Деятельность международных организаций по стандартизации. Международные стандарты и их применение
- •17.3 Ряды предпочтительных чисел и их применение
- •7.3. Международные организации по стандартизации
- •Глава 7. Основы государственной системы стандартизации 2ш
- •17.1 Передача информации о размерах единиц
- •2. Методика выполнения измерений (мви). Разработка, аттестации и надзор за применением мви.
- •26.1.Аксиомы метрологии. Математические модели эмпирических зрв.
- •26. 2. Применение средств вычислительной техники в си.
- •26.2 Применение вычислительной техники в средствах
- •26. 3. Измерение качества. Структура показателей качества.
- •27. 1. Измеряемые величины, их качественная и количественная характеристики.
- •27. 2. Применение си физической величины (по выбору).
- •Принцип действия
- •Способы подключения
- •Применение термопар
- •Преимущества термопар
- •Недостатки
- •Типы термопар
27. 2. Применение си физической величины (по выбору).
Физическая величина - Одно из свойств физического объекта (физической системы, явления или процесса), общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них.
Термопа́ра (термоэлектрический преобразователь температуры) — термоэлемент, применяемый в измерительных и преобразовательных устройствах, а также в системах автоматизации.
Термопара — два разнородных проводника, соединенных на одном конце и формирующих часть устройства, использующего термоэлектрический эффект для измерения температуры.
Принцип действия
Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Когда концы проводника находятся при разных температурах, между ними возникает разность потенциалов, пропорциональная разности температур. Коэффициент пропорциональности называют коэффициентом термо-ЭДС. У разных металлов коэффициент термо-ЭДС разный и, соответственно, разность потенциалов, возникающая между концами разных проводников, будет различная. Помещая спай из металлов с отличными коэффициентами термо-ЭДС в среду с температурой Т1, мы получим напряжение между противоположными контактами, находящимися при другой температуре Т2, которое будет пропорционально разности температур Т1 и Т2.
Способы подключения
Наиболее распространены два способа подключения термопары к измерительным преобразователям: простой и дифференциальный. В первом случае измерительный преобразователь подключается напрямую к двум термоэлектродам. Во втором случае используютcя два проводника с разными коэффициентами термо-ЭДС, спаянные в двух концах, а измерительный преобразователь включается в разрыв одного из проводников. Для дистанционного подключения термопар используются удлинительные или компенсационные провода. Удлинительные провода изготавливаются из того же материала, что и термоэлектроды, но могут иметь другой диаметр. Компенсационные провода используются в основном с термопарами из благородных металлов и имеют состав, отличный от состава термоэлектродов. Требования к проводам для подключения термопар установлены в стандарте МЭК 60584-3.
Применение термопар
Для измерения температуры различных типов объектов и сред, а также в автоматизированных системах управления и контроля. Термопары из вольфрам-рениевого сплава являются самыми высокотемпературными контактными датчиками температуры. Такие термопары незаменимы в металлургии для контроля температуры расплавленных металлов.
Преимущества термопар
Высокая точность измерения значений температуры (вплоть до ±0,01 °С)
Большой температурный диапазон измерения: от −200 °C до 2500 °C
Простота
Дешевизна
Надежность
Недостатки
Для получения высокой точности измерения температуры (до ±0,01 °С) требуется индивидуальная градуировка термопары.
На показания влияет температура свободных концов, на которую необходимо вносить поправку. В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового сенсора и автоматическое введение поправки к измеренной ТЭДС.
Эффект Пельтье (в момент снятия показаний, необходимо исключить протекание тока через термопару, так как ток, протекающий через неё, охлаждает горячий спай и разогревает холодный).
Зависимость ТЭДС от температуры существенно нелинейна. Это создает трудности при разработке вторичных преобразователей сигнала.
Возникновение термоэлектрической неоднородности в результате резких перепадов температур, механических напряжений, коррозии и химических процессов в проводниках приводит к изменению градуировочной характеристики и погрешностям до 5 К.
На большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей.