Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Типичная_клетка_прокариот.doc
Скачиваний:
3
Добавлен:
15.08.2019
Размер:
454.66 Кб
Скачать

Пили типа 1

Пили типа 1 прочно связаны с клеткой, и для того, чтобы отсоединить их от неё, нужны значительные усилия, большие, нежели для удаления жгутиков или половых пилей. Пили данного типа также устойчивы и к химическим воздействиям. Эти пили разрушаются только при кипячении в растворе с низким значением pH, что вызывает необратимую денатурацию белка. Пили типа 1 располагаются по всей поверхности бактерии или перитрихиально. У одной клетки может быть 50—400 пилей длиной до 1,5 мкм. Диаметр этих пилей около 7 нм, а отверстия — 2,0—2,5 нм.

Пили типа 1 придают бактериям гидрофобность, снижают их электрофоретическую подвижность. Они вызывают агглютинацию эритроцитов за счет того, что такие бактерии приклеиваются к эритроцитам (так же, как к другим клеткам животных), а также к клеткам растений и грибов, к неорганическим частицам.

Пили типа 2

Пили типа 2 сходны с пилями 1-го типа, но не вызывают агглютинации эритроцитов. Антигенно они близки к пилям 1-го типа и, по-видимому, представляют собой их мутантную форму. Описан и еще ряд вариантов пилей, близких к пилям 1-го типа.

Могут встречаться и другие типы пилей, в том числе половые пили

Половые пили

Половые пили Е. соli образуются у клеток донорских штаммов, отличающихся от изогенных реципиентных наличием у клеток особого генетического детерминанта — полового фактора, или фактора трансмиссивности, который либо является автономным репликоном (F-фактор), либо входит в состав автономного репликона, либо интегрирован с бактериальной хромосомой. Фактор трансмиссивности находится в составе плазмид — факторов множественной устойчивости к антибиотикам (R-факторы), факторов колициногенности и ряда других плазмид. Половые пили отличаются от пилей общего типа по строению и антигенной специфичности, пили, кодируемые различными генетическими детерминантами, также различны.

Половые F-пили, определяемые F-факторами, представляют собой белковые цилиндры, перпендикулярные поверхности клетки, толщиной 8,5—9,5 нм и длиной до 1,1 мкм. Бактерии, имеющие F—пили, приобретают новый антиген, у них изменяется поверхностный заряд. Бактерии с F-пилями малоподвижны, проявляют тенденцию к автоагглютинации, например, при понижении значения рН среды. F—фактор интересен еще и потому, что иногда (примерно в 1 случае из 100000) он встраивается в молекулу основной ДНК клетки-хозяина. Тогда при конъюгации переносится не только F—фактор, но, также и остальная ДНК. Этот процесс занимает примерно 90 минут, но клетки могут расходиться и раньше, до полного обмена ДНК. Такие штаммы постоянно передают всю или большую часть своей ДНК другим клеткам. Эти штаммы называются Hrf-штаммами (High frequency recombination), потому что донорная ДНК таких штаммов рекомбинирует с ДНК реципиента.

Сформированные пили сохраняются на поверхности клетки 4—5 мин, а затем сбрасываются. Это свидетельствует в пользу точки зрения о том, пили — активные образования.

Половые пили обычно образуют только активно растущие клетки, клетки из культуры, находящейся в стационарной фазе роста, обычно лишены пилей и являются плохими донорами.

Как уже было отмечено, существует много более или менее различающихся плазмид, способных определять образование половых пилей, которые также несколько различаются. Рецепторы на поверхности реципиентных клеток обладают разной степенью сродства к разным пилям, что может сильно влиять на эффективность конъюгации бактерий.

Пили, подобные пилям E. coli, образуют и другие представители Enterobacteriaceae. Половые пили имеют Vibrio, Pasteurella, Aeromonas, Pseudomonas.

У фотосинтезирующих бактерий мембраны, содержащие хлорофилл, образуют сеть, которая пронизывает тело бактерии. У сине-зеленых водорослей фотосинтезирующие мембраны слиты в плоские пузырьки.

Дополнительно:

Рис. 3. Общая схема строения бактериальной клетки.

Рис. 4. Схематическое изображение строения бактериальной клетки (по Г. Шлегелю): I — гранулы поли-В-оксимасляной кислоты; 2 — жировые капельки; з — включения серы; 4 — трубчатые тилакоиды; 5 — пластинчатые тилакоиды; 6 — пузырьки; 7 — хроматофоры; 8 —нуклеоид; 9 — рибосомы; 10 — цитоплазма; 11 — базальное тельце; 12 — жгутики; 13 — капсула; 14 — клеточная стенка; 15 — цитоплазматическая мембрана; 16 — мезосома; 17 — газовые вакуоли; 18 — ламеллярные структуры; 19 — гранулы полисахарида; 20 — гранулы полифосфата. Основные структуры бактериальной клетки представлены в верхней части рисунка, дополнительные, мембранные структуры, имеющиеся у фототрофных и нефототрофных бактерий,— в средней части, а включения запасных веществ — в нижней части.