
- •Часть I
- •1. Начинаем
- •1.1. Решение задачи
- •1.2.1. Порядок выполнения инструкций
- •1.3. Директивы препроцессора
- •1.4. Немного о комментариях
- •1.5. Первый взгляд на ввод/вывод
- •1.5.1. Файловый ввод/вывод
- •2.1. Встроенный тип данных “массив”
- •2.2. Динамическое выделение памяти и указатели
- •2.3. Объектный подход
- •2.4. Объектно-ориентированный подход
- •2.5. Использование шаблонов
- •2.6. Использование исключений
- •2.7. Использование пространства имен
- •2.8. Стандартный массив – это вектор
- •Часть II
- •3.1. Литералы
- •3.2. Переменные
- •3.2.1. Что такое переменная
- •3.2.2. Имя переменной
- •3.2.3. Определение объекта
- •3.3. Указатели
- •3.4. Строковые типы
- •3.4.1. Встроенный строковый тип
- •3.4.2. Класс string
- •3.5. Спецификатор const
- •3.6. Ссылочный тип
- •3.8. Перечисления
- •3.9. Тип “массив”
- •3.9.1. Многомерные массивы
- •3.9.2. Взаимосвязь массивов и указателей
- •3.10. Класс vector
- •3.11. Класс complex
- •3.12. Директива typedef
- •3.13. Спецификатор volatile
- •3.14. Класс pair
- •3.15. Типы классов
- •4. Выражения
- •4.1. Что такое выражение?
- •4.2. Арифметические операции
- •4.3. Операции сравнения и логические операции
- •4.4. Операции присваивания
- •4.5. Операции инкремента и декремента
- •4.6. Операции с комплексными числами
- •4.7. Условное выражение
- •4.8. Оператор sizeof
- •4.9. Операторы new и delete
- •4.10. Оператор “запятая”
- •4.11. Побитовые операторы
- •4.12. Класс bitset
- •4.13. Приоритеты
- •4.14. Преобразования типов
- •4.14.1. Неявное преобразование типов
- •4.14.2. Арифметические преобразования типов
- •4.14.3. Явное преобразование типов
- •4.14.4. Устаревшая форма явного преобразования
- •4.15. Пример: реализация класса Stack
- •5. Инструкции
- •5.1. Простые и составные инструкции
- •5.2. Инструкции объявления
- •5.3. Инструкция if
- •5.4. Инструкция switch
- •5.5. Инструкция цикла for
- •5.6. Инструкция while
- •5.8. Инструкция do while
- •5.8. Инструкция break
- •5.9. Инструкция continue
- •5.10. Инструкция goto
- •5.11. Пример связанного списка
- •5.11.1. Обобщенный список
- •6. Абстрактные контейнерные типы
- •6.1. Система текстового поиска
- •6.2. Вектор или список?
- •6.3. Как растет вектор?
- •6.4. Как определить последовательный контейнер?
- •6.5. Итераторы
- •6.6. Операции с последовательными контейнерами
- •6.6.1. Удаление
- •6.6.2. Присваивание и обмен
- •6.6.3. Обобщенные алгоритмы
- •6.7. Читаем текстовый файл
- •6.8. Выделяем слова в строке
- •6.9. Обрабатываем знаки препинания
- •6.10. Приводим слова к стандартной форме
- •6.11. Дополнительные операции со строками
- •6.12. Строим отображение позиций слов
- •6.12.1. Определение объекта map и заполнение его элементами
- •6.12.2. Поиск и извлечение элемента отображения
- •6.12.3. Навигация по элементам отображения
- •6.12.4. Словарь
- •6.12.5. Удаление элементов map
- •6.13. Построение набора стоп-слов
- •6.13.1. Определение объекта set и заполнение его элементами
- •6.13.2. Поиск элемента
- •6.13.3. Навигация по множеству
- •6.14. Окончательная программа
- •6.15. Контейнеры multimap и multiset
- •6.16. Стек
- •6.17. Очередь и очередь с приоритетами
- •6.18. Вернемся в классу iStack
- •Часть III
- •7. Функции
- •7.1. Введение
- •7.2. Прототип функции
- •7.2.1. Тип возвращаемого функцией значения
- •7.2.2. Список параметров функции
- •7.2.3. Проверка типов формальных параметров
- •7.3. Передача аргументов
- •7.3.1. Параметры-ссылки
- •7.3.2. Параметры-ссылки и параметры-указатели
- •7.3.3. Параметры-массивы
- •7.3.4. Абстрактные контейнерные типы в качестве параметров
- •7.3.5. Значения параметров по умолчанию
- •7.3.6. Многоточие
- •7.4. Возврат значения
- •7.4.1. Передача данных через параметры и через глобальные объекты
- •7.5. Рекурсия
- •7.6. Встроенные функции
- •7.7. Директива связывания extern "c" a
- •7.8. Функция main(): разбор параметров командной строки
- •7.8.1. Класс для обработки параметров командной строки
- •7.9. Указатели на функции
- •7.9.1. Тип указателя на функцию
- •7.9.2. Инициализация и присваивание
- •7.9.3. Вызов
- •7.9.4. Массивы указателей на функции
- •7.9.5. Параметры и тип возврата
- •7.9.6. Указатели на функции, объявленные как extern "c"
- •8. Область видимости и время жизни
- •8.1. Область видимости
- •8.1.1. Локальная область видимости
- •8.2. Глобальные объекты и функции
- •8.2.1. Объявления и определения
- •8.2.2. Сопоставление объявлений в разных файлах
- •8.2.3. Несколько слов о заголовочных файлах
- •8.3. Локальные объекты
- •8.3.1. Автоматические объекты
- •8.3.2. Регистровые автоматические объекты
- •8.3.3. Статические локальные объекты
- •8.4. Динамически размещаемые объекты
- •8.4.1. Динамическое создание и уничтожение единичных объектов
- •8.4.2. Шаблон auto_ptr а
- •8.4.3. Динамическое создание и уничтожение массивов
- •8.4.4. Динамическое создание и уничтожение константных объектов
- •8.4.5. Оператор размещения new а
- •8.5. Определения пространства имен а
- •8.5.1. Определения пространства имен
- •8.5.2. Оператор разрешения области видимости
- •8.5.3. Вложенные пространства имен
- •8.5.4. Определение члена пространства имен
- •8.5.5. Поо и члены пространства имен
- •8.5.6. Безымянные пространства имен
- •8.6. Использование членов пространства имен а
- •8.6.1. Псевдонимы пространства имен
- •8.6.2. Using-объявления
- •8.6.3. Using-директивы
- •8.6.4. Стандартное пространство имен std
- •9. Перегруженные функции
- •9.1. Объявления перегруженных функций
- •9.1.1. Зачем нужно перегружать имя функции
- •9.1.2. Как перегрузить имя функции
- •9.1.3. Когда не надо перегружать имя функции
- •9.1.4. Перегрузка и область видимости a
- •9.1.5. Директива extern "c" и перегруженные функции a
- •9.1.6. Указатели на перегруженные функции a
- •9.1.7. Безопасное связывание a
- •9.2. Три шага разрешения перегрузки
- •9.3. Преобразования типов аргументов a
- •9.3.1. Подробнее о точном соответствии
- •9.3.2. Подробнее о расширении типов
- •9.3.3. Подробнее о стандартном преобразовании
- •9.3.4. Ссылки
- •9.4. Детали разрешения перегрузки функций
- •9.4.1. Функции-кандидаты
- •9.4.2. Устоявшие функции
- •9.4.3. Наилучшая из устоявших функция
- •9.4.4. Аргументы со значениями по умолчанию
- •10. Шаблоны функций
- •10.1. Определение шаблона функции
- •10.2. Конкретизация шаблона функции
- •10.3. Вывод аргументов шаблона а
- •10.4. Явное задание аргументов шаблона a
- •10.5. Модели компиляции шаблонов а
- •10.5.1. Модель компиляции с включением
- •10.5.2. Модель компиляции с разделением
- •10.5.3. Явные объявления конкретизации
- •10.6. Явная специализация шаблона а
- •10.7. Перегрузка шаблонов функций а
- •10.8. Разрешение перегрузки при конкретизации a
- •10.9. Разрешение имен в определениях шаблонов а
- •10.10. Пространства имен и шаблоны функций а
- •10.11. Пример шаблона функции
- •11. Обработка исключений
- •11.1. Возбуждение исключения
- •11.3. Перехват исключений
- •11.3.1. Объекты-исключения
- •11.3.2. Раскрутка стека
- •11.3.3. Повторное возбуждение исключения
- •11.3.4. Перехват всех исключений
- •11.4. Спецификации исключений
- •11.4.1. Спецификации исключений и указатели на функции
- •11.5. Исключения и вопросы проектирования
- •12. Обобщенные алгоритмы
- •12.1. Краткий обзор
- •12.2. Использование обобщенных алгоритмов
- •12.3. Объекты-функции
- •12.3.1. Предопределенные объекты-функции
- •12.3.2. Арифметические объекты-функции
- •12.3.3. Сравнительные объекты-функции
- •12.3.4. Логические объекты-функции
- •12.3.5. Адаптеры функций для объектов-функций
- •12.3.6. Реализация объекта-функции
- •12.4. Еще раз об итераторах
- •12.4.1. Итераторы вставки
- •12.4.2. Обратные итераторы
- •12.4.3. Потоковые итераторы
- •12.4.4. Итератор istream_iterator
- •12.4.5. Итератор ostream_iterator
- •12.4.6. Пять категорий итераторов
- •12.5. Обобщенные алгоритмы
- •12.5.1. Алгоритмы поиска
- •12.5.2. Алгоритмы сортировки и упорядочения
- •12.5.3. Алгоритмы удаления и подстановки
- •12.5.4. Алгоритмы перестановки
- •12.5.9. Алгоритмы работы с хипом
- •12.6. Когда нельзя использовать обобщенные алгоритмы
- •12.6.1. Операция list_merge()
- •12.6.2. Операция list::remove()
- •12.6.3. Операция list::remove_if()
- •12.6.4. Операция list::reverse()
- •12.6.5. Операция list::sort()
- •12.6.6. Операция list::splice()
- •12.6.7. Операция list::unique()
- •Часть IV
- •13. Классы
- •13.1. Определение класса
- •13.1.1. Данные-члены
- •13.1.2. Функции-члены
- •13.1.3. Доступ к членам
- •13.1.4. Друзья
- •13.1.5. Объявление и определение класса
- •13.2. Объекты классов
- •13.3. Функции-члены класса
- •13.3.1. Когда использовать встроенные функции-члены
- •13.3.2. Доступ к членам класса
- •13.3.3. Закрытые и открытые функции-члены
- •13.3.4. Специальные функции-члены
- •13.3.5. Функции-члены со спецификаторами const и volatile
- •13.3.6. Объявление mutable
- •13.4. Неявный указатель this
- •13.4.1. Когда использовать указатель this
- •13.5. Статические члены класса
- •13.5.1. Статические функции-члены
- •13.6. Указатель на член класса
- •13.6.1. Тип члена класса
- •13.6.2. Работа с указателями на члены класса
- •13.6.3. Указатели на статические члены класса
- •13.7. Объединение – класс, экономящий память
- •13.8. Битовое поле – член, экономящий память
- •13.9. Область видимости класса a
- •13.9.1. Разрешение имен в области видимости класса
- •13.10. Вложенные классы a
- •13.10.1. Разрешение имен в области видимости вложенного класса
- •13.11. Классы как члены пространства имен a
- •13.12. Локальные классы a
- •14. Инициализация, присваивание и уничтожение класса
- •14.1. Инициализация класса
- •14.2. Конструктор класса
- •14.2.1. Конструктор по умолчанию
- •14.2.2. Ограничение прав на создание объекта
- •14.2.3. Копирующий конструктор
- •14.3. Деструктор класса
- •14.3.1. Явный вызов деструктора
- •14.3.2. Опасность увеличения размера программы
- •14.4. Массивы и векторы объектов
- •14.4.1. Инициализация массива, распределенного из хипа a
- •14.4.2. Вектор объектов
- •14.5. Список инициализации членов
- •14.6. Почленная инициализация a
- •14.6.1. Инициализация члена, являющегося объектом класса
- •14.7. Почленное присваивание a
- •14.8. Соображения эффективности a
- •15. Перегруженные операторы и определенные пользователем преобразования
- •15.1. Перегрузка операторов
- •15.1.1. Члены и не члены класса
- •15.1.2. Имена перегруженных операторов
- •15.1.3. Разработка перегруженных операторов
- •15.2. Друзья
- •15.4. Оператор взятия индекса
- •15.5. Оператор вызова функции
- •15.6. Оператор “стрелка”
- •15.7. Операторы инкремента и декремента
- •15.8. Операторы new и delete
- •15.8.1. Операторы new[ ] и delete [ ]
- •15.8.2. Оператор размещения new() и оператор delete()
- •15.9. Определенные пользователем преобразования
- •15.9.1. Конвертеры
- •15.9.2. Конструктор как конвертер
- •15.10. Выбор преобразования a
- •15.10.1. Еще раз о разрешении перегрузки функций
- •15.10.2. Функции-кандидаты
- •15.10.3. Функции-кандидаты для вызова функции в области видимости класса
- •15.10.4. Ранжирование последовательностей определенных пользователем преобразований
- •15.11. Разрешение перегрузки и функции-члены a
- •15.11.1. Объявления перегруженных функций-членов
- •15.11.2. Функции-кандидаты
- •15.11.3. Устоявшие функции
- •15.12. Разрешение перегрузки и операторы a
- •15.12.1. Операторные функции-кандидаты
- •15.12.2. Устоявшие функции
- •15.12.3. Неоднозначность
- •16. Шаблоны классов
- •16.1. Определение шаблона класса
- •16.1.1. Определения шаблонов классов Queue и QueueItem
- •16.2. Конкретизация шаблона класса
- •16.2.1. Аргументы шаблона для параметров-констант
- •16.3. Функции-члены шаблонов классов
- •16.3.1. Функции-члены шаблонов Queue и QueueItem
- •16.4. Объявления друзей в шаблонах классов
- •16.4.1. Объявления друзей в шаблонах Queue и QueueItem
- •16.5. Статические члены шаблонов класса
- •16.6. Вложенные типы шаблонов классов
- •16.7. Шаблоны-члены
- •16.8. Шаблоны классов и модель компиляции a
- •16.8.1. Модель компиляции с включением
- •16.8.2. Модель компиляции с разделением
- •16.8.3. Явные объявления конкретизации
- •16.9. Специализации шаблонов классов a
- •16.10. Частичные специализации шаблонов классов a
- •16.11. Разрешение имен в шаблонах классов a
- •16.12. Пространства имен и шаблоны классов
- •16.13. Шаблон класса Array
- •Часть V
- •17. Наследование и подтипизация классов
- •17.1. Определение иерархии классов
- •17.1.1. Объектно-ориентированное проектирование
- •17.2. Идентификация членов иерархии
- •17.2.1. Определение базового класса
- •17.2.2. Определение производных классов
- •17.2.3. Резюме
- •17.3. Доступ к членам базового класса
- •17.4. Конструирование базового и производного классов
- •17.4.1. Конструктор базового класса
- •17.4.2. Конструктор производного класса
- •17.4.3. Альтернативная иерархия классов
- •17.4.4. Отложенное обнаружение ошибок
- •17.4.5. Деструкторы
- •17.5. Виртуальные функции в базовом и производном классах
- •17.5.1. Виртуальный ввод/вывод
- •17.5.2. Чисто виртуальные функции
- •17.5.3. Статический вызов виртуальной функции
- •17.5.4. Виртуальные функции и аргументы по умолчанию
- •17.5.5. Виртуальные деструкторы
- •17.5.6. Виртуальная функция eval()
- •17.5.7. Почти виртуальный оператор new
- •17.5.8. Виртуальные функции, конструкторы и деструкторы
- •17.6. Почленная инициализация и присваивание a
- •17.7. Управляющий класс UserQuery
- •17.7.1. Определение класса UserQuery
- •17.8. Соберем все вместе
- •18. Множественное и виртуальное наследование
- •18.1. Готовим сцену
- •18.2. Множественное наследование
- •18.3. Открытое, закрытое и защищенное наследование
- •18.3.1. Наследование и композиция
- •18.3.2. Открытие отдельных членов
- •18.3.3. Защищенное наследование
- •18.3.4. Композиция объектов
- •18.4. Область видимости класса и наследование
- •18.4.1. Область видимости класса при множественном наследовании
- •18.5. Виртуальное наследование a
- •18.5.1. Объявление виртуального базового класса
- •18.5.2. Специальная семантика инициализации
- •18.5.3. Порядок вызова конструкторов и деструкторов
- •18.5.4. Видимость членов виртуального базового класса
- •18.6. Пример множественного виртуального наследования a
- •18.6.1. Порождение класса, контролирующего выход за границы массива
- •18.6.2. Порождение класса отсортированного массива
- •18.6.3. Класс массива с множественным наследованием
- •19.1. Идентификация типов во время выполнения
- •19.1.1. Оператор dynamic_cast
- •19.1.2. Оператор typeid
- •19.1.3. Класс type_info
- •19.2. Исключения и наследование
- •19.2.1. Исключения, определенные как иерархии классов
- •19.2.2. Возбуждение исключения типа класса
- •19.2.3. Обработка исключения типа класса
- •19.2.4. Объекты-исключения и виртуальные функции
- •19.2.5. Раскрутка стека и вызов деструкторов
- •19.2.6. Спецификации исключений
- •19.2.7. Конструкторы и функциональные try-блоки
- •19.3. Разрешение перегрузки и наследование a
- •19.3.1. Функции-кандидаты
- •19.3.2. Устоявшие функции и последовательности пользовательских преобразований
- •19.3.3. Наилучшая из устоявших функций
- •20. Библиотека iostream
- •20.2. Ввод
- •20.2.1. Строковый ввод
- •20.3. Дополнительные операторы ввода/вывода
- •20.4. Перегрузка оператора вывода
- •20.5. Перегрузка оператора ввода
- •20.6. Файловый ввод/вывод
- •20.7. Состояния потока
- •20.8. Строковые потоки
- •20.9. Состояние формата
- •20.10. Сильно типизированная библиотека
- •21. Обобщенные алгоритмы в алфавитном порядке
- •Алгоритм accumulate()
- •Алгоритм adjacent_difference()
- •Алгоритм adjacent_find()
- •Алгоритм binary_search()
- •Алгоритм copy()
- •Алгоритм copy_backward()
- •Алгоритм count()
- •Алгоритм count_if()
- •Алгоритм equal()
- •Алгоритм equal_range()
- •Алгоритм fill()
- •Алгоритм fill_n()
- •Алгоритм find()
- •Алгоритм find_if()
- •Алгоритм find_end()
- •Алгоритм find_first_of()
- •Алгоритм for_each()
- •Алгоритм generate()
- •Алгоритм generate_n()
- •Алгоритм includes()
- •Алгоритм inner_product()
- •Алгоритм inplace_merge()
- •Алгоритм iter_swap()
- •Алгоритм lexicographical_compare()
- •Алгоритм lower_bound()
- •Алгоритм max()
- •Алгоритм max_element()
- •Алгоритм min()
- •Алгоритм min_element()
- •Алгоритм merge()
- •Алгоритм mismatch()
- •Алгоритм next_permutation()
- •Алгоритм nth_element()
- •Алгоритм partial_sort()
- •Алгоритм partial_sort_copy()
- •Алгоритм partial_sum()
- •Алгоритм partition()
- •Алгоритм prev_permutation()
- •Алгоритм random_shuffle()
- •Алгоритм remove()
- •Алгоритм remove_copy()
- •Алгоритм remove_if()
- •Алгоритм remove_copy_if()
- •Алгоритм replace()
- •Алгоритм replace_copy()
- •Алгоритм replace_if()
- •Алгоритм replace_copy_if()
- •Алгоритм reverse()
- •Алгоритм reverse_copy()
- •Алгоритм rotate()
- •Алгоритм rotate_copy()
- •Алгоритм search()
- •Алгоритм search_n()
- •Алгоритм set_difference()
- •Алгоритм set_intersection()
- •Алгоритм set_symmetric_difference()
- •Алгоритм set_union()
- •Алгоритм sort()
- •Алгоритм stable_partition()
- •Алгоритм stable_sort()
- •Алгоритм swap()
- •Алгоритм swap_ranges()
- •Алгоритм transform()
- •Алгоритм unique()
- •Алгоритм unique_copy()
- •Алгоритм upper_bound()
- •Алгоритмы для работы с хипом
- •Алгоритм make_heap()
- •Алгоритм pop_heap()
- •Алгоритм push_heap()
- •Алгоритм sort_heap()
14.5. Список инициализации членов
Модифицируем наш класс Account, объявив член _name типа string:
#include <string>
class Account {
public:
// ...
private:
unsigned int _acct_nmbr;
double _balance;
string _name;
};
Придется заодно изменить и конструкторы. Возникает две проблемы: поддержание совместимости с первоначальным интерфейсом и инициализация объекта класса с помощью подходящего набора конструкторов.
Исходный конструктор Account с двумя параметрами
Account( const char*, double = 0.0 );
не может инициализировать член типа string. Например:
string new_client( "Steve Hall" );
Account new_acct( new_client, 25000 );
не будет компилироваться, так как не существует неявного преобразования из типа string в тип char*. Инструкция
Account new_acct( new_client.c_str(), 25000 );
правильна, но вызовет у пользователей класса недоумение. Одно из решений – добавить новый конструктор вида:
Account( string, double = 0.0 );
Если написать:
Account new_acct( new_client, 25000 );
вызывается именно этот конструктор, тогда как старый код
Account *open_new_account( const char *nm )
{
Account *pact = new Account( nm );
// ...
return pacct;
}
по-прежнему будет приводить к вызову исходного конструктора с двумя параметрами.
Так как в классе string определено преобразование из типа char* в тип string (преобразования классов обсуждаются в этой главе ниже), то можно заменить исходный конструктор на новый, которому в качестве первого параметра передается тип string. В таком случае, когда встречается инструкция:
Account myAcct( "Tinkerbell" );
"Tinkerbell" преобразуется во временный объект типа string. Затем этот объект передается новому конструктору с двумя параметрами.
При проектировании приходится идти на компромисс между увеличением числа конструкторов класса Account и несколько менее эффективной обработкой аргументов типа char* из-за необходимости создавать временный объект. Мы предоставили две версии конструктора с двумя параметрами. Тогда модифицированный набор конструкторов Account будет таким:
#include <string>
class Account {
public:
Account();
Account( const char*, double=0.0 );
Account( const string&, double=0.0 );
Account( const Account& );
// ...
private:
// ...
};
Как правильно инициализировать член, являющийся объектом некоторого класса с собственным набором конструкторов? Этот вопрос можно разделить на три:
где вызывается конструктор по умолчанию? Внутри конструктора по умолчанию класса Account;
где вызывается копирующий конструктор? Внутри копирующего конструктора класса Account и внутри конструктора с двумя параметрами, принимающего в качестве первого тип string;
как передать аргументы конструктору класса, являющегося членом другого класса? Это необходимо делать внутри конструктора Account с двумя параметрами, принимающего в качестве первого тип char*.
Решение заключается в использовании списка инициализации членов (мы упоминали о нем в разделе 14.2). Члены, являющиеся классами, можно явно инициализировать с помощью списка, состоящего из разделенных запятыми пар “имя члена/значение”. Наш конструктор с двумя параметрами теперь выглядит так (напомним, что _name – это член, являющийся объектом класса string):
inline Account::
Account( const char* name, double opening_bal )
: _name( name ), _balance( opening_bal )
{
_acct_nmbr = het_unique_acct_nmbr();
}
Список инициализации членов следует за сигнатурой конструктора и отделяется от нее двоеточием. В нем указывается имя члена, а в скобках – начальные значения, что аналогично синтаксису вызова функции. Если член является объектом класса, то эти значения становятся аргументами, передаваемыми подходящему конструктору, который затем и используется. В нашем примере значение name передается конструктору string, который применяется к члену _name. Член _balance инициализируется значением opening_bal.
Аналогично выглядит второй конструктор с двумя параметрами:
inline Account::
Account( const string& name, double opening_bal )
: _name( name ), _balance( opening_bal )
{
_acct_nmbr = het_unique_acct_nmbr();
}
В этом случае вызывается копирующий конструктор string, инициализирующий член _name значением параметра name типа string.
Часто у новичков возникает вопрос: в чем разница между использованием списка инициализации и присваиванием значений членам в теле конструктора? Например, в чем разница между
inline Account::
Account( const char* name, double opening_bal )
: _name( name ), _balance( opening_bal )
{
_acct_nmbr = het_unique_acct_nmbr();
}
и
Account( const char* name, double opening_bal )
{
_name = name;
_balance = opening_bal;
_acct_nmbr = het_unique_acct_nmbr();
}
В конце работы обоих конструкторов все три члена будут иметь одинаковые значения. Разница в том, что только список обеспечивает инициализацию тех членов, которые являются объектами класса. В теле конструктора установка значения члена – это не инициализация, а присваивание. Важно это различие или нет, зависит от природы члена.
С концептуальной точки зрения выполнение конструктора состоит из двух фаз: фаза явной или неявной инициализации и фаза вычислений, включающая все инструкции в теле конструктора. Любая установка значений членов во второй фазе рассматривается как присваивание, а не инициализация. Непонимание этого различия приводит к ошибкам и неэффективным программам.
Первая фаза может быть явной или неявной в зависимости от того, имеется ли список инициализации членов. При неявной инициализации сначала вызываются конструкторы по умолчанию всех базовых классов в порядке их объявления, а затем конструкторы по умолчанию всех членов, являющихся объектами классов. (Базовые классы мы будем рассматривать в главе 17 при обсуждении объектно-ориентированного программирования.) Например, если написать:
inline Account::
Account()
{
_name = "";
_balance = 0.0;
_acct_nmbr = 0;
}
то фаза инициализации будет неявной. Еще до выполнения тела конструктора вызывается конструктор по умолчанию класса string, ассоциированный с членом _name. Это означает, что присваивание _name пустой строки излишне.
Для объектов классов различие между инициализацией и присваиванием существенно. Член, являющийся объектом класса, всегда следует инициализировать с помощью списка, а не присваивать ему значение в теле конструктора. Более правильной является следующая реализация конструктора по умолчанию класса Account:
inline Account::
Account() : _name( string() )
{
_balance = 0.0;
_acct_nmbr = 0;
}
Мы удалили ненужное присваивание _name из тела конструктора. Явный же вызов конструктора по умолчанию string излишен. Ниже приведена эквивалентная, но более компактная версия:
inline Account::
Account()
{
_balance = 0.0;
_acct_nmbr = 0;
}
Однако мы еще не ответили на вопрос об инициализации двух членов встроенных типов. Например, так ли существенно, где происходит инициализация _balance: в списке инициализации или в теле конструктора? Инициализация и присваивание членам, не являющимся объектами классов, эквивалентны как с точки зрения результата, так и с точки зрения производительности (за двумя исключениями). Мы предпочитаем использовать список:
// предпочтительный стиль инициализации
inline Account::
Account() : _balance( 0.0 ), _acct_nmbr( 0 )
{}
Два вышеупомянутых исключения – это константные члены и члены-ссылки независимо от типа. Для них всегда нужно использовать список инициализации, в противном случае компилятор выдаст ошибку:
class ConstRef {
public:
ConstRef(int ii );
private:
int i;
const int ci;
int &ri;
};
ConstRef::
ConstRef( int ii )
{ // присваивание
i = ii; // правильно
ci = ii; // ошибка: нельзя присваивать константному члену
ri = i; // ошибка: ri не инициализирована
}
К началу выполнения тела конструктора инициализация всех константных членов и членов-ссылок должна быть завершена. Для этого нужно указать их в списке инициализации. Правильная реализация предыдущего примера такова:
// правильно: инициализируются константные члены и ссылки
ConstRef::
ConstRef( int ii )
: ci( ii ), ri ( i )
{ i = ii; }
Каждый член должен встречаться в списке инициализации не более одного раза. Порядок инициализации определяется не порядком следования имен в списке, а порядком объявления членов. Если дано следующее объявление членов класса Account:
class Account {
public:
// ...
private:
unsigned int _acct_nmbr;
double _balance;
string _name;
};
то порядок инициализации для такой реализации конструктора по умолчанию
inline Account::
Account() : _name( string() ), _balance( 0.0 ), _acct_nmbr( 0 )
{}
будет следующим: _acct_nmbr, _balance, _name. Однако члены, указанные в списке (или в неявно инициализируемом члене-объекте класса), всегда инициализируются раньше, чем производится присваивание членам в теле конструктора. Например, в следующем конструкторе:
inline Account::
Account( const char* name, double bal )
: _name( name ), _balance( bal )
{
_acct_nmbr = get_unique_acct_nmbr();
}
порядок инициализации такой: _balance, _name, _acct_nmbr.
Расхождение между порядком инициализации и порядком следования членов в соответствующем списке может приводить к трудным для обнаружения ошибкам, когда один член класса используется для инициализации другого:
class X {
int i;
int j;
public:
// видите проблему?
X( int val )
: j( val ), i( j )
{}
// ...
};
кажется, что перед использованием для инициализации i член j уже инициализирован значением val, но на самом деле i инициализируется первым, для чего применяется еще неинициализированный член j. Мы рекомендуем помещать инициализацию одного члена другим (если вы считаете это необходимым) в тело конструктора:
// предпочтительная идиома
X::X( int val ) : i( val ) { j = i; }
Упражнение 14.12
Что неверно в следующих определениях конструкторов? Как бы вы исправили обнаруженные ошибки?
(a) Word::Word( char *ps, int count = 1 )
: _ps( new char[strlen(ps)+1] ),
_count( count )
{
if ( ps )
strcpy( _ps, ps );
else {
_ps = 0;
_count = 0;
}
}
(b) class CL1 {
public:
CL1() { c.real(0.0); c.imag(0.0); s = "not set"; }
// ...
private:
complex<double> c;
string s;
}
(c) class CL2 {
public:
CL2( map<string,location> *pmap, string key )
: _text( key ), _loc( (*pmap)[key] ) {}
// ...
private:
location _loc;
string _text;
};