Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 1-17 испр.doc
Скачиваний:
234
Добавлен:
13.08.2019
Размер:
5.01 Mб
Скачать

2.6. Символы плоскостей (граней)

Пространственную ориентацию кристаллографических плоско­стей и направлений (атомных слоев и рядов) определяют по от­ношению к кристаллографическим осям. Начало координат помещают в одной из вершин элементарной ячейки; кристалло­графические оси проходят через ее ребра. Ось +х принимают направленной из начала координат в сторону наблюдателя, ось + у - по горизонтали вправо, а ось +z - вертикально вверх (рис. 2.6).

Положение плоскости в пространстве однозначно определяется отрезками, отсекаемыми ею на координатных осях. За единицу измерения вдоль каждой кристаллографической оси принимают период решетки в направлении этой оси, т. е. длину ребра эле­ментарной ячейки а (рис. 2.6, а). Например, заштрихованные плоскости отсекают по осям а:, у, z отрезка величиной 1, 1, 1 (рис. 2.6, а), 1, 1, ∞ (рис. 2.6, б), 1, ∞, ∞ (рис. 2.6,в), 1, 1, 1/2 (рис. 2.6, г) и 1, 2, 1 (рис. 2.6, д).

Чтобы при математических операциях не иметь дела с беско­нечностями, а также с дробными числами, используют величины, обратные отрезкам, отсекаемым плоскостью на кристаллографи­ческих осях, причем отношение этих величин приводят к отноше­нию трех наименьших целых чисел. Совокупность трех таких чисел (hkl), заключенную в круглые скобки и характеризующую ориентацию данной плоскости по отношению к кристаллографи­ческим осям, называют индексами плоскости (индексами Миллера). Заштрихованные плоскости на рис. 11 имеют следующие индексы:

( )=( ), ( )=( ), ( )=( ),

( )=( ) и ( )=( ).

Кристаллографические символы в скобках читают как «один, один, один», «один, один, ноль» и т.д.

Если плоскость пересекает кристаллографические оси в области отрицательных значений координат, то над соответствующими индексами ставят знак минус.

Определённый набор индексов, например ( ), характеризует ориентировку в пространстве на единственной плоскости, а всего семейства параллельных плоскостей по одну сторону от начала координат. Например, если на рис. 2.6.,б параллельно заштрихованной плоскости ( ) изобразить плоскости, отсекающие на осях x и y отрезки в два или три периода решётки, т.е. плоскости ( ) и ( ), то обе они будут относиться к семейству параллельных плоскостей ( ).

Если у всех индексов переменить знак на обратный, например ( ) вместо (110), то новые индексы будут характеризовать ориентировку того же семейства параллельных плоскостей, но расположенных по другую сторону от начала координат. Так как начало координат выбирают произвольно, то индексы (hkl) и ( ) всегда относятся к одному и тому же семейству параллельных плоскостей. В том случае, когда плоскость проходит через выбранное начало координат, для определения её индексов следует перенести начало координат в другую вершину элементарной ячейки или рассмотреть соседнюю плоскость, параллельную первой.

Рис. 2.6. Примеры кристаллографических плоскостей в кубической решетке

Непараллельные плоскости, имеющие одинаковое атомное строение, кристаллографически эквивалентны. Например, кристаллографически эквивалентные параллельные плоскости (100), (010) и (001). Вместе с параллельными им плоскостями ( ), ( ) и ( ) они образуют куб. Совокупность шести кристаллографически эквивалентных плоскостей (граней) куба обозначают индексами какой-нибудь одной плоскости (грани), заключенными в фигурные скобки, например индексами {100} или {001} и т.д.

Совокупность восьми кристаллографически эквивалентных плоскостей октаэдра – (111), ( ), ( ), ( ), ( ), ( ), ( ),( ) – обычно обозначают индексами {111}. Совокупность всех двенадцати плоскостей ромбического додекаэдра обычно обозначают индексами {110}.

Плоскости куба {100}, октаэдра {111} и ромбического додекаэдра обычно обозначают индексами {110}.

Плоскости куба {100}, октаэдра {111} и ромбического додекаэдра {110} все время встречаются при анализе дефектов в кубических решётках. Плоскости с большими численными значениями индексов имеют очень малую плотность упаковки атомов и очень малые межплоскостные расстояния. Плоскости, у которых численное значение индексов превышает 3, редко рассматривают.

Таким образом, для определения индексов плоскости необходимо:

1) найти отрезки, отсекаемые плоскостью на кристаллографических осях, приняв за единицу измерения период решётки;

2) взять обратные значения этих чисел;

3) привести отношение полученных величин к отношению трёх наименьших целых чисел;

4) заключить полученные три числа в круглые скобки, если указывается определённое семейство параллельных плоскостей, или в фигурные скобки, если требуется обозначить совокупность всех кристаллографических эквивалентных плоскостей.