- •Основы кристаллографии и дефекты кристаллического строения
- •Лекция 1. Основные понятия о кристаллах План лекции
- •1.1. Закон постоянства гранных углов
- •Контрольные вопросы
- •Лекция 2. Структура кристаллов и пространственная
- •План лекции
- •2.1. Элементарная ячейка, её выбор, метрика
- •2.2. Кристаллическая структура
- •2.3. Кристаллографические символы узлов, плоскостей и направлений в кристаллах кубической сингонии
- •2.4. Символы узлов
- •2.5. Символы рядов (ребер, направлений)
- •2.6. Символы плоскостей (граней)
- •Контрольные вопросы
- •3.2. Определение символа атомной плоскости по координатам трёх узлов пространственной решётки
- •3.4. Кристаллографическая символика в гексагональной сингонии
- •Контрольные вопросы
- •Лекция 4. Элементы симметрии конечных фигур План лекции
- •4.1. Понятие о симметрии
- •4.2. Элементы симметрии кристаллических многогранников
- •Обозначение элементов симметрии
- •4.3. Взаимодействие симметрических операций (элементов симметрии)
- •4.4. Осевая теорема Эйлера
- •4.5. Теоремы сложения элементов симметрии
- •4.6. Точечные группы симметрии
- •Контрольные вопросы
- •5.2. Правила кристаллографической установки кристаллов для различных сингоний.
- •5.3. Кристаллографические проекции
- •5.4. Сферическая проекция
- •5.5. Стереографическая проекция
- •5.6. Гномостереографическая проекция
- •Контрольные вопросы
- •План лекции
- •6.1. Классы симметрии
- •6.2. Виды симметрии кристаллов, обладающих единичных направлением
- •6.3. Элементы симметрии бесконечных фигур
- •6.4. Винтовые оси симметрии
- •6.5. Плоскость скользящего отражения
- •6.6 Решетки Бравэ
- •6.7. Условия выбора ячеек Бравэ
- •6.8 Характеристика решеток Бравэ
- •Тип ячейки Бравэ.
- •6.9. Трансляционная группа, базис ячейки
- •6.10. Пример Выбора элементарной ячейки Бравэ
- •Контрольные вопросы
- •Лекция 7. Задачи, решаемые кристаллохимией План лекции
- •7.1 Координационное число, координационный полиэдр, число формульных единиц
- •7. 2. Плотнейшие шаровые упаковки в кристаллах
- •7.3. Основные типы структур
- •7.4. Основные категории кристаллохимии
- •Контрольные вопросы
- •Лекция 8. Точечные дефекты План лекции
- •8.1. Понятие об идеальном и реальном кристалле
- •8.2. Классификация дефектов кристаллической решетки
- •8.3. Точечные дефекты
- •8.4. Искажение решетки вокруг точечных дефектов
- •8.5. Термодинамика точечных дефектов
- •8.6. Миграция точечных дефектов
- •8.6.1.Миграция вакансий
- •8.6.2. Миграция межузельных атомов
- •8.6.3.Миграция примесных атомов
- •Контрольные вопросы
- •Лекция 9. Основные типы дислокаций и их движение План лекции
- •9.2. Скольжение краевой дислокации
- •9.3.Переползание краевой дислокации
- •9.6. Смешанные дислокации и их движение
- •Контрольные вопросы
- •Лекция 10. Количественные характеристики дислокаций План лекции
- •10.2 Вектор Бюргерса
- •10.3. Плотность дислокаций
- •Контрольные вопросы
- •Лекция 11. Упругие свойства дислокаций План лекции
- •11.1. Энергия дислокации
- •11.2. Силы, действующие на дислокацию
- •11.3. Упругое взаимодействие параллельных краевых дислокаций
- •11.4. Упругое взаимодействие параллельных винтовых дислокации
- •Контрольные вопросы
- •Лекция 13. Пересечение дислокаций План лекции
- •13.1. Пересечение краевых дислокаций
- •13.2. Пересечение краевой и винтовой дислокаций
- •13.3. Пересечение винтовых дислокаций
- •13.4. Движение дислокации с порогами
- •13.5. Пересечение растянутых дислокаций
- •Контрольные вопросы
- •14.1.2 Атмосферы Снука
- •14.1.3. Атмосферы Сузуки
- •1.4.2. Взаимодействие дислокаций с вакансиями и межузельными атомами
- •Контрольные вопросы
- •Лекция 15. Образование дислокаций План лекции
- •15.1. Происхождение дислокаций
- •15.2. Размножение дислокаций при пластической деформации Источник Франка — Рида
- •Контрольные вопросы
- •Лекция 16. Границы зерен и субзерен План лекции
- •16.1.Границы кручения и наклона
- •16.2. Малоугловые границы
- •16.3. Высокоугловые границы
- •16.4. Специальные и произвольные границы
- •16.5. Зернограничные дислокации
- •План лекции
- •17.2. Торможение дислокаций при их взаимодействии с другими дислокациями и границами зерен
- •17.3. Торможение дислокаций дисперсными частицами
- •17.4. Выгибание дислокаций между дисперсными частицами
- •17.5. Локальное поперечное скольжение
- •17.6. Перерезание дислокациями дисперсных частиц
- •17.7.2. Торможение дислокаций в твердых растворах
Контрольные вопросы
1. Объясните, к какой области краевой дислокации притягиваются атомы элемента, растворенного по способу внедрения.
2. Объясните, к какой области краевой дислокации притягиваются атомы элемента, растворенного по способу замещения.
3. Объясните, почему атомы элемента, растворенного по способу внедрения, притягивают к области гидростатического растяжения, и размещается в ней.
4. Объясните, что называют атмосферой Коттрелла.
5. Объясните образование атмосферы Коттрелла.
6. Объясните, почему винтовая дислокация неспособна притягивать единичные точечные дефекты.
7. Объясните, какой атом может притягиваться к винтовой дислокации.
8. Объясните, чем отличается винтовая дислокация от геликоидальной дислокации.
9. Объясните, как влияет повышение и понижение температуры на атмосферу Коттрелла.
10. Объясните эффект Снука.
11. Объясните, что называют атмосферой Снука.
12. Объясните, чем отличаются атмосферы Коттрелла и Снука.
13. Объясните, что называют атмосферой Сузуки.
14. Объясните перераспределение атомов в атмосфере Сузуки.
15. Объясните, в каком случае вакансии и межузельные атомы могут образовывать атмосферу вокруг линии дислокации типа коттрелловской.
Лекция 15. Образование дислокаций План лекции
1. Происхождение дислокаций.
2. Размножение дислокаций при пластической деформации.
Источник Франка – Рида
15.1. Происхождение дислокаций
Энергия дислокаций составляет несколько электрон-вольт на атом. Поэтому термическая активация не может способствовать образованию дислокаций (в противоположность образованию точечных дефектов).
Сразу же после кристаллизации металлические моно- и поликристаллы содержат, как правило, очень большое число дислокаций. Следовательно, дислокации могут возникать непосредственно у фронта кристаллизации или же при охлаждении кристаллов после исчезновения жидкой фазы. Ниже кратко рассмотрены шесть возможных механизмов образования дислокаций.
1. На фронте кристаллизации легко себе представить образование винтовой дислокации. Когда кристалл, не содержащий дислокаций, растет путем присоединения атомов к ступеньке на новом слое, то этот слой, полностью достраиваясь, сам себя изживает. Для образования нового атомного слоя требуется возникновение на гладкой поверхности кристалла «двумерного» зародыша, что является самым узким звеном процесса роста совершенного кристалла и требует больших пересыщений (переохлаждении). Это звено отсутствует, если растет кристалл, содержащий винтовую дислокацию. Присоединение атомов к ступеньке па его поверхности приводит к вращению ступеньки. Поскольку атомы откладываются на винтовую поверхность, то ступенька все время продолжает существовать, облегчая тем самым присоединение атомов к кристаллу и его рост.
Кристалл, содержащий винтовую дислокацию, представляет собой атомную плоскость, закрученную по спирали. Как же возникает такое закручивание в первый момент роста, при образовании зародыша? Известно, что, как правило, зарождение кристаллов несамопроизвольно. Кристаллы зарождаются на готовой подложке, которой служат стенки изложницы и мельчайшие твердые частицы, взвешенные в расплаве. На поверхность таких подложек выходят винтовые дислокации, т. е. здесь имеются готовые ступеньки, к которым и присоединяются атомы из кристаллизующегося расплава. Таким образом, винтовая дислокация из подложки как бы «прорастает» в образующийся кристалл.
2. Другая причина зарождения дислокаций в период кристаллизации — возникновение напряжений, Когда происходит ориентированное нарастание (эпитаксия) кристалла на подложку, то сопряжение двух решеток из-за имеющегося всегда небольшого их несоответствия вызывает упругие напряжения в подложке и эпитаксиальном слое. Когда толщина эпитаксиального слоя достигает некоторой критической величины, компенсация несоответствия решеток подложки и растущего кристалла становится энергетически более выгодной не только в результате упругой деформации по всей поверхности сопряжения двух решеток, но и частично за счет дислокаций, возникающих на этой поверхности (рис. 15.1). Такие дислокации называют структурными, эпитаксиальными, или дислокациями несоответствия. Чем больше степень несоответствия двух решеток, тем выше плотность эпитаксиальных дислокаций. Повышение энергии из-за образования дислокаций компенсируется снижением энергии упругой деформации сопряженных решеток.
3. Из-за сегрегации примесей при кристаллизации образуются смежные слои разного состава с несколько различающимися межатомными расстояниями. Эта разница вызывает появление упругих напряжений. При определенной разнице в межатомных расстояниях соседних слоев энергетически выгодным может стать их сопряжение с участием структурных дислокаций на границе между соседними слоями.
4. Дислокации могут возникать во время кристаллизации из-за разных случайностей при росте кристаллов. Эти случайности приводят к образованию мозаичной структуры—кристалл состоит из субзерен, слегка взаимно разориентированных. Одна из возможных причин образования субзерен—изгиб очень «нежных» ветвей дендрита из-за конвекционных токов, градиента температур и действия других факторов. Когда слегка разориентированные ветви одного дендрита срастаются, на границе между ними возникают дислокации. На рис. 15.2 показан простейший случай срастания двух симметрично разориентированных частей одного кристалла (или разных кристаллов). Вертикальные атомные плоскости в месте срастания не доходят до низа кристалла. Вокруг края каждой такой плоскости находится краевая дислокация. На рис. 15.2,6 поверхность срастания представляет собой стенку из положительных дислокаций.
Рис. 15.1 Дислокация несоответствия на границе растущего кристалла К с подложкой П; ак¹ап
5. Дислокации могут возникать в полностью затвердевшем металле в непосредственной близости от фронта кристаллизации и вдали от него. Считают, что основным здесь является вакансионный механизм образования дислокаций. Равновесная концентрация вакансии резко уменьшается с понижением температуры от точки кристаллизации, При ускоренном охлаждении кристалл сильно пересыщается вакансиями. Избыточные вакансии конденсируются в дискообразныс образования, параллельные плоскости плотнейшей упаковки. Диск может быть толщиной в один, два или три слоя вакансий. Когда диаметр вакансионного диска превышает некоторую критическую величину, то под действием сил межатомного притяжения его стороны сближаются и в результате захлопывания диска образуется сидячая дислокация Франка, которая может трансформироваться в скользящую призматическую–дислокацию.
|
Рис. 15.2. Образование стенки дислокаций при срастании зерен во время кристаллизации: а—до срастания; б—после срастания |
Захлопывание дисков вакансий с образованием дислокационных петель происходит не только при ускоренном охлаждении по окончании кристаллизации, но, естественно, и при охлаждении после специального нагрева под закалку.
При ядерном облучении металлов дислокационные петли возникают на границах плоских скоплений межузельных атомов.
6. Дислокации зарождаются при концентрации напряжений в отдельных участках кристаллов (около включений, трещин) до величин порядка G/30. Например, при охлаждении металла из-за разного термического сжатия включения и кристалла около их поверхности раздела могут возникнуть упругие напряжения, достаточные для самопроизвольного зарождения дислокационных петель. При зарождении дислокационных петель и удалении их от включения происходит релаксация (разрядка) напряжений.
7. Одним из основных источников дислокаций при пластической деформации являются границы зерен.
