- •Основы кристаллографии и дефекты кристаллического строения
- •Лекция 1. Основные понятия о кристаллах План лекции
- •1.1. Закон постоянства гранных углов
- •Контрольные вопросы
- •Лекция 2. Структура кристаллов и пространственная
- •План лекции
- •2.1. Элементарная ячейка, её выбор, метрика
- •2.2. Кристаллическая структура
- •2.3. Кристаллографические символы узлов, плоскостей и направлений в кристаллах кубической сингонии
- •2.4. Символы узлов
- •2.5. Символы рядов (ребер, направлений)
- •2.6. Символы плоскостей (граней)
- •Контрольные вопросы
- •3.2. Определение символа атомной плоскости по координатам трёх узлов пространственной решётки
- •3.4. Кристаллографическая символика в гексагональной сингонии
- •Контрольные вопросы
- •Лекция 4. Элементы симметрии конечных фигур План лекции
- •4.1. Понятие о симметрии
- •4.2. Элементы симметрии кристаллических многогранников
- •Обозначение элементов симметрии
- •4.3. Взаимодействие симметрических операций (элементов симметрии)
- •4.4. Осевая теорема Эйлера
- •4.5. Теоремы сложения элементов симметрии
- •4.6. Точечные группы симметрии
- •Контрольные вопросы
- •5.2. Правила кристаллографической установки кристаллов для различных сингоний.
- •5.3. Кристаллографические проекции
- •5.4. Сферическая проекция
- •5.5. Стереографическая проекция
- •5.6. Гномостереографическая проекция
- •Контрольные вопросы
- •План лекции
- •6.1. Классы симметрии
- •6.2. Виды симметрии кристаллов, обладающих единичных направлением
- •6.3. Элементы симметрии бесконечных фигур
- •6.4. Винтовые оси симметрии
- •6.5. Плоскость скользящего отражения
- •6.6 Решетки Бравэ
- •6.7. Условия выбора ячеек Бравэ
- •6.8 Характеристика решеток Бравэ
- •Тип ячейки Бравэ.
- •6.9. Трансляционная группа, базис ячейки
- •6.10. Пример Выбора элементарной ячейки Бравэ
- •Контрольные вопросы
- •Лекция 7. Задачи, решаемые кристаллохимией План лекции
- •7.1 Координационное число, координационный полиэдр, число формульных единиц
- •7. 2. Плотнейшие шаровые упаковки в кристаллах
- •7.3. Основные типы структур
- •7.4. Основные категории кристаллохимии
- •Контрольные вопросы
- •Лекция 8. Точечные дефекты План лекции
- •8.1. Понятие об идеальном и реальном кристалле
- •8.2. Классификация дефектов кристаллической решетки
- •8.3. Точечные дефекты
- •8.4. Искажение решетки вокруг точечных дефектов
- •8.5. Термодинамика точечных дефектов
- •8.6. Миграция точечных дефектов
- •8.6.1.Миграция вакансий
- •8.6.2. Миграция межузельных атомов
- •8.6.3.Миграция примесных атомов
- •Контрольные вопросы
- •Лекция 9. Основные типы дислокаций и их движение План лекции
- •9.2. Скольжение краевой дислокации
- •9.3.Переползание краевой дислокации
- •9.6. Смешанные дислокации и их движение
- •Контрольные вопросы
- •Лекция 10. Количественные характеристики дислокаций План лекции
- •10.2 Вектор Бюргерса
- •10.3. Плотность дислокаций
- •Контрольные вопросы
- •Лекция 11. Упругие свойства дислокаций План лекции
- •11.1. Энергия дислокации
- •11.2. Силы, действующие на дислокацию
- •11.3. Упругое взаимодействие параллельных краевых дислокаций
- •11.4. Упругое взаимодействие параллельных винтовых дислокации
- •Контрольные вопросы
- •Лекция 13. Пересечение дислокаций План лекции
- •13.1. Пересечение краевых дислокаций
- •13.2. Пересечение краевой и винтовой дислокаций
- •13.3. Пересечение винтовых дислокаций
- •13.4. Движение дислокации с порогами
- •13.5. Пересечение растянутых дислокаций
- •Контрольные вопросы
- •14.1.2 Атмосферы Снука
- •14.1.3. Атмосферы Сузуки
- •1.4.2. Взаимодействие дислокаций с вакансиями и межузельными атомами
- •Контрольные вопросы
- •Лекция 15. Образование дислокаций План лекции
- •15.1. Происхождение дислокаций
- •15.2. Размножение дислокаций при пластической деформации Источник Франка — Рида
- •Контрольные вопросы
- •Лекция 16. Границы зерен и субзерен План лекции
- •16.1.Границы кручения и наклона
- •16.2. Малоугловые границы
- •16.3. Высокоугловые границы
- •16.4. Специальные и произвольные границы
- •16.5. Зернограничные дислокации
- •План лекции
- •17.2. Торможение дислокаций при их взаимодействии с другими дислокациями и границами зерен
- •17.3. Торможение дислокаций дисперсными частицами
- •17.4. Выгибание дислокаций между дисперсными частицами
- •17.5. Локальное поперечное скольжение
- •17.6. Перерезание дислокациями дисперсных частиц
- •17.7.2. Торможение дислокаций в твердых растворах
13.5. Пересечение растянутых дислокаций
Перед моментом пересечения растянутых дислокаций их головные частичные дислокации из-за упругого взаимодействия прогибаются назад в сторону хвостовых частичных дислокаций (ср. рис. 13.8, и, б). К моменту пересечения на обеих дислокациях возникают перетяжки дефектов упаковки и сразу же после своего образования пороги являются единичными дислокациями (рис. 13.8, в). В металлах с низкой энергией дефекта упаковки, т.е. большой шириной растянутых дислокаций, для их пересечения требуются повышенные напряжения.
После образования порога энергия может понизиться в результате его диссоциации, Допустим, что в плоскости АВС находится растянутая дислокация с вектором Бюргерса АС, состоящая из двух частичных дислокаций с векторами Бюргерса Аδ и δС. Эту дислокацию могут пересекать дислокации, скользящие в плоскостях АВС, СОВ и ADВ с векторами Бюргерса АD, СD и ВD. Как было отмечено, направление порога на дислокации совпадает с направлением вектора Бюргерса пересекающей дислокации. Следовательно, на расщепленной дислокации ЛС могут образоваться нерасщепленные пороги, линии которых находятся вдоль направлений АD, СD -и ВD.
Рассмотрим порог, лежащий вдоль ВD (рис. 13.9, а). Поскольку он образовался на дислокации с вектором Бюргерса АС, то и сам порог вдоль линии ВD будет иметь вектор Бюргерса АС. Здесь уместно напомнить, что отрезки АС, ВD, Аδ, δС и др. в тетраэдре Томпсона являются векторами Бюргерса единичных и частичных дислокаций; линии же самих дислокаций могут и совпадать с направлениями соответствующих отрезков в тетраэдре и располагаться под произвольными углами к ним.
Порог с вектором Бюргерса АС может понизить свою энергию по реакции, аналогичной реакции (76): АС=А γ +γα + α С.
Это значит, что порог — отрезок дислокации вдоль линии ВD — как бы «выбрасывает» в плоскостях АDВ и DВС частичные дислокации Шокли с векторами Бюргерса Аγ и αС, образуя дефект упаковки в виде двугранного угла. В вершине этого угла, т. е. на линии бывшего нерасщепленного порога, возникает краевая вершинная дислокация с вектором Бюргерса γα. Вид дислокации с диссоциировавшим порогом показан на рис.9,б. Здесь и далее предполагается, что узлы встречи порога и дислокации стянуты.
Растянутый порог на рис. 13.9,6 может еще существенно понизить свою энергию по следующей реакции:
Аδ +Аγ = δγ.
Здесь образовалась новая вершинная дислокация δγ в результате взаимодействия одной дислокации Шокли, принадлежащей исходной растянутой дислокации, и одной дислокации Шокли, принадлежащей расщепленному порогу. Соответствующая конфигурация дислокации с расщепленным порогом показана на рис. 13.9,в.
Кроме только что указанной реакции, возможна аналогичная ей реакция образования еще одной вершинной дислокации: αС + δС = αδ. Эта реакция также приводит к существенному понижению энергии.
На рис. 13.9, и показан окончательный вид растянутой дислокации с порогом, который после своего образования расщепился, претерпев ряд реакций, и получил сложную форму. Рассмотренное расщепление порога привело к сильному снижению его энергии.
Рис. 13.9 Стадии расщепления порога ВО на дислокации в г. ц. к. решетке
Скольжение порога возможно только в том случае, если он под действием приложенных напряжений стянется в отрезок единичной дислокации. Чем больше снижается энергия при диссоциации порога, тем больше придется затратить энергии на его стягивание. Если приложенные напряжения недостаточно велики, то порог остается расщепленным. Такой порог, не может скользить и сильно тормозит движение дислокации.
В заключение следует отметить, что роль порогов в поведении дислокаций и образовании точечных дефектов необычайно велика. Поведение же порогов, особенно расщепленных, довольно сложное и изучено слабо.
