
- •Основы кристаллографии и дефекты кристаллического строения
- •Лекция 1. Основные понятия о кристаллах План лекции
- •1.1. Закон постоянства гранных углов
- •Контрольные вопросы
- •Лекция 2. Структура кристаллов и пространственная
- •План лекции
- •2.1. Элементарная ячейка, её выбор, метрика
- •2.2. Кристаллическая структура
- •2.3. Кристаллографические символы узлов, плоскостей и направлений в кристаллах кубической сингонии
- •2.4. Символы узлов
- •2.5. Символы рядов (ребер, направлений)
- •2.6. Символы плоскостей (граней)
- •Контрольные вопросы
- •3.2. Определение символа атомной плоскости по координатам трёх узлов пространственной решётки
- •3.4. Кристаллографическая символика в гексагональной сингонии
- •Контрольные вопросы
- •Лекция 4. Элементы симметрии конечных фигур План лекции
- •4.1. Понятие о симметрии
- •4.2. Элементы симметрии кристаллических многогранников
- •Обозначение элементов симметрии
- •4.3. Взаимодействие симметрических операций (элементов симметрии)
- •4.4. Осевая теорема Эйлера
- •4.5. Теоремы сложения элементов симметрии
- •4.6. Точечные группы симметрии
- •Контрольные вопросы
- •5.2. Правила кристаллографической установки кристаллов для различных сингоний.
- •5.3. Кристаллографические проекции
- •5.4. Сферическая проекция
- •5.5. Стереографическая проекция
- •5.6. Гномостереографическая проекция
- •Контрольные вопросы
- •План лекции
- •6.1. Классы симметрии
- •6.2. Виды симметрии кристаллов, обладающих единичных направлением
- •6.3. Элементы симметрии бесконечных фигур
- •6.4. Винтовые оси симметрии
- •6.5. Плоскость скользящего отражения
- •6.6 Решетки Бравэ
- •6.7. Условия выбора ячеек Бравэ
- •6.8 Характеристика решеток Бравэ
- •Тип ячейки Бравэ.
- •6.9. Трансляционная группа, базис ячейки
- •6.10. Пример Выбора элементарной ячейки Бравэ
- •Контрольные вопросы
- •Лекция 7. Задачи, решаемые кристаллохимией План лекции
- •7.1 Координационное число, координационный полиэдр, число формульных единиц
- •7. 2. Плотнейшие шаровые упаковки в кристаллах
- •7.3. Основные типы структур
- •7.4. Основные категории кристаллохимии
- •Контрольные вопросы
- •Лекция 8. Точечные дефекты План лекции
- •8.1. Понятие об идеальном и реальном кристалле
- •8.2. Классификация дефектов кристаллической решетки
- •8.3. Точечные дефекты
- •8.4. Искажение решетки вокруг точечных дефектов
- •8.5. Термодинамика точечных дефектов
- •8.6. Миграция точечных дефектов
- •8.6.1.Миграция вакансий
- •8.6.2. Миграция межузельных атомов
- •8.6.3.Миграция примесных атомов
- •Контрольные вопросы
- •Лекция 9. Основные типы дислокаций и их движение План лекции
- •9.2. Скольжение краевой дислокации
- •9.3.Переползание краевой дислокации
- •9.6. Смешанные дислокации и их движение
- •Контрольные вопросы
- •Лекция 10. Количественные характеристики дислокаций План лекции
- •10.2 Вектор Бюргерса
- •10.3. Плотность дислокаций
- •Контрольные вопросы
- •Лекция 11. Упругие свойства дислокаций План лекции
- •11.1. Энергия дислокации
- •11.2. Силы, действующие на дислокацию
- •11.3. Упругое взаимодействие параллельных краевых дислокаций
- •11.4. Упругое взаимодействие параллельных винтовых дислокации
- •Контрольные вопросы
- •Лекция 13. Пересечение дислокаций План лекции
- •13.1. Пересечение краевых дислокаций
- •13.2. Пересечение краевой и винтовой дислокаций
- •13.3. Пересечение винтовых дислокаций
- •13.4. Движение дислокации с порогами
- •13.5. Пересечение растянутых дислокаций
- •Контрольные вопросы
- •14.1.2 Атмосферы Снука
- •14.1.3. Атмосферы Сузуки
- •1.4.2. Взаимодействие дислокаций с вакансиями и межузельными атомами
- •Контрольные вопросы
- •Лекция 15. Образование дислокаций План лекции
- •15.1. Происхождение дислокаций
- •15.2. Размножение дислокаций при пластической деформации Источник Франка — Рида
- •Контрольные вопросы
- •Лекция 16. Границы зерен и субзерен План лекции
- •16.1.Границы кручения и наклона
- •16.2. Малоугловые границы
- •16.3. Высокоугловые границы
- •16.4. Специальные и произвольные границы
- •16.5. Зернограничные дислокации
- •План лекции
- •17.2. Торможение дислокаций при их взаимодействии с другими дислокациями и границами зерен
- •17.3. Торможение дислокаций дисперсными частицами
- •17.4. Выгибание дислокаций между дисперсными частицами
- •17.5. Локальное поперечное скольжение
- •17.6. Перерезание дислокациями дисперсных частиц
- •17.7.2. Торможение дислокаций в твердых растворах
2.2. Кристаллическая структура
Структура кристалла – это конкретное расположение частиц в пространстве. Описывая структуру, надо указать вид и размер частиц и расстояния между ними. Но так как многие структуры сходны, можно иногда указать лишь относительное расположение частиц атомов или атомных групп) в кристалле, а не абсолютные расстояния между ними. Так определяется структурный тип. Структуры кристаллов, принадлежащих к одному структурному типу, одинаковы с точностью до подобия.
2.3. Кристаллографические символы узлов, плоскостей и направлений в кристаллах кубической сингонии
Для описания кристаллических многогранников и структур применяется метод кристаллографического индицирования, удобный для всех кристаллографических систем координат независимо от того, прямоугольны они или косоугольны, одинаковые у них масштабные отрезки по осям или разные.
2.4. Символы узлов
Если
один из узлов решетки выбрать
за начало координат, то любой другой
узел решетки определяется радиусом-вектором
,
где
m,
n,
p
—
три числа, которые называют
индексами
данного узла.
|
Рис. 2.4.Символы узлов |
Совокупность
чисел т,
п, р, записанная
в двойных
квадратных скобках [[тпр]]
как показано на рис. 2.4. называется
символом
узла. Числа
в символе
пишутся подряд, без запятых, читаются
порознь. Запятые ставятся лишь
в тех (редчайших) случаях, когда
индекс двузначен. Знак минус пишется
над цифрой. Например, [[
]]
читается
«один минус, три, ноль», [[023]] - «ноль,
два, три».
2.5. Символы рядов (ребер, направлений)
Ряд, или узловая прямая, а также ребро кристаллического многогранника характеризуются наклоном в выбранной системе координат. Если ряд не проходит через начало координат, мысленно сдвинем его параллельно самому себе так, чтобы он прошел через начало координат. Мы всегда имеем право на такой параллельный перенос, потому что все параллельные направления в кристалле равнозначны. Тогда направление ряда определится двумя точками: началом координат и любым узлом ряда. Грани кристалла, пересекающиеся по параллельным ребрам, образуют пояс, или зону, а общее направление этих ребер называется осью зоны. Символ [тпр] характеризует ось зоны.
За
единицу измерения по каждой
кристаллографической оси выбирают
период решётки. Полученные значения
координат точки приводят к отношения
трёх наименьших целых чисел. Эти числа,
заключённые в квадратные скобки,
являются индексами одного направления
и всего семейства параллельных направлений
[uvw].
Например, кристаллографические оси
имеют индексы [
],
[
]
и [
]
(рис. 2.5). Отрицательное значение координат
отмечают знаком минус над соответствующими
индексами. При перемене знака всех
индексов на обратный получаем направление,
противоположное исходному, например
[
]
вместо [
]
на рис. 2.5.
|
Рис. 2.5. Символы рядов |
Совокупность
непараллельных кристаллографически
эквивалентных направлений обозначают
индексами одного из направлений,
заключёнными в ломанные скобки. Например,
совокупность шести направлений рёбер
куба [
],
[
],
[
],
[
],
[
],
[
]
обозначают индексами <100> или <001>
и т.д. Совокупность всех направлений
диагонали грани куба можно обозначить
индексами <110>, а совокупность всех
направлений пространственной диагонали
куба – индексами <111>.
Для определения индексов направлений необходимо:
1) из семейства параллельных направлений выбрать направление, проходящее через начало координат, или перенести направление параллельно самому себе в начало координат;
2) определить координаты любой точки этого направления, приняв за единицу измерения период решётки;
3) привести отношение полученных величин к отношению трёх наименьших целых чисел;
4) заключить полученные три числа в квадратные скобки, если указывается определённое семейство параллельных направлений, или в ломаные скобки, если требуется обозначить совокупность всех кристаллографически эквивалентных направлений.
Грани кристалла, пересекающиеся по параллельным ребрам, образуют пояс, или зону, а общее направление этих ребер называется осью зоны. Символ [тпр] характеризует ось зоны.