
- •Основы кристаллографии и дефекты кристаллического строения
- •Лекция 1. Основные понятия о кристаллах План лекции
- •1.1. Закон постоянства гранных углов
- •Контрольные вопросы
- •Лекция 2. Структура кристаллов и пространственная
- •План лекции
- •2.1. Элементарная ячейка, её выбор, метрика
- •2.2. Кристаллическая структура
- •2.3. Кристаллографические символы узлов, плоскостей и направлений в кристаллах кубической сингонии
- •2.4. Символы узлов
- •2.5. Символы рядов (ребер, направлений)
- •2.6. Символы плоскостей (граней)
- •Контрольные вопросы
- •3.2. Определение символа атомной плоскости по координатам трёх узлов пространственной решётки
- •3.4. Кристаллографическая символика в гексагональной сингонии
- •Контрольные вопросы
- •Лекция 4. Элементы симметрии конечных фигур План лекции
- •4.1. Понятие о симметрии
- •4.2. Элементы симметрии кристаллических многогранников
- •Обозначение элементов симметрии
- •4.3. Взаимодействие симметрических операций (элементов симметрии)
- •4.4. Осевая теорема Эйлера
- •4.5. Теоремы сложения элементов симметрии
- •4.6. Точечные группы симметрии
- •Контрольные вопросы
- •5.2. Правила кристаллографической установки кристаллов для различных сингоний.
- •5.3. Кристаллографические проекции
- •5.4. Сферическая проекция
- •5.5. Стереографическая проекция
- •5.6. Гномостереографическая проекция
- •Контрольные вопросы
- •План лекции
- •6.1. Классы симметрии
- •6.2. Виды симметрии кристаллов, обладающих единичных направлением
- •6.3. Элементы симметрии бесконечных фигур
- •6.4. Винтовые оси симметрии
- •6.5. Плоскость скользящего отражения
- •6.6 Решетки Бравэ
- •6.7. Условия выбора ячеек Бравэ
- •6.8 Характеристика решеток Бравэ
- •Тип ячейки Бравэ.
- •6.9. Трансляционная группа, базис ячейки
- •6.10. Пример Выбора элементарной ячейки Бравэ
- •Контрольные вопросы
- •Лекция 7. Задачи, решаемые кристаллохимией План лекции
- •7.1 Координационное число, координационный полиэдр, число формульных единиц
- •7. 2. Плотнейшие шаровые упаковки в кристаллах
- •7.3. Основные типы структур
- •7.4. Основные категории кристаллохимии
- •Контрольные вопросы
- •Лекция 8. Точечные дефекты План лекции
- •8.1. Понятие об идеальном и реальном кристалле
- •8.2. Классификация дефектов кристаллической решетки
- •8.3. Точечные дефекты
- •8.4. Искажение решетки вокруг точечных дефектов
- •8.5. Термодинамика точечных дефектов
- •8.6. Миграция точечных дефектов
- •8.6.1.Миграция вакансий
- •8.6.2. Миграция межузельных атомов
- •8.6.3.Миграция примесных атомов
- •Контрольные вопросы
- •Лекция 9. Основные типы дислокаций и их движение План лекции
- •9.2. Скольжение краевой дислокации
- •9.3.Переползание краевой дислокации
- •9.6. Смешанные дислокации и их движение
- •Контрольные вопросы
- •Лекция 10. Количественные характеристики дислокаций План лекции
- •10.2 Вектор Бюргерса
- •10.3. Плотность дислокаций
- •Контрольные вопросы
- •Лекция 11. Упругие свойства дислокаций План лекции
- •11.1. Энергия дислокации
- •11.2. Силы, действующие на дислокацию
- •11.3. Упругое взаимодействие параллельных краевых дислокаций
- •11.4. Упругое взаимодействие параллельных винтовых дислокации
- •Контрольные вопросы
- •Лекция 13. Пересечение дислокаций План лекции
- •13.1. Пересечение краевых дислокаций
- •13.2. Пересечение краевой и винтовой дислокаций
- •13.3. Пересечение винтовых дислокаций
- •13.4. Движение дислокации с порогами
- •13.5. Пересечение растянутых дислокаций
- •Контрольные вопросы
- •14.1.2 Атмосферы Снука
- •14.1.3. Атмосферы Сузуки
- •1.4.2. Взаимодействие дислокаций с вакансиями и межузельными атомами
- •Контрольные вопросы
- •Лекция 15. Образование дислокаций План лекции
- •15.1. Происхождение дислокаций
- •15.2. Размножение дислокаций при пластической деформации Источник Франка — Рида
- •Контрольные вопросы
- •Лекция 16. Границы зерен и субзерен План лекции
- •16.1.Границы кручения и наклона
- •16.2. Малоугловые границы
- •16.3. Высокоугловые границы
- •16.4. Специальные и произвольные границы
- •16.5. Зернограничные дислокации
- •План лекции
- •17.2. Торможение дислокаций при их взаимодействии с другими дислокациями и границами зерен
- •17.3. Торможение дислокаций дисперсными частицами
- •17.4. Выгибание дислокаций между дисперсными частицами
- •17.5. Локальное поперечное скольжение
- •17.6. Перерезание дислокациями дисперсных частиц
- •17.7.2. Торможение дислокаций в твердых растворах
9.6. Смешанные дислокации и их движение
Дислокация не может закончиться внутри кристалла, не соединяясь с другой дислокацией. Это следует из того, что граница зоны сдвига всегда является замкнутой линией. Часть этой границы может проходить по внешней поверхности кристалла. Следовательно, линия дислокации должна замыкаться внутри кристалла или оканчиваться на его поверхности. Здесь возможны самые разнообразные варианты.
Рис. 9.14. Краевые и винтовые дислокации образуют одну непрерывную ломаную (а) или плавную (б) линию внутри кристалла. Плавная линия содержит также участки смешанной ориентации
На рис. 9.14, а линия дислокации состоит из прямых участков краевой и винтовой ориентации, перпендикулярных и параллельных вектору сдвига соответственно. Это частный случай.
В более общем случае в плоскости скольжения линия дислокации —кривая (рис. 9.14,6). Отдельные малые участки этой кривой имеют краевую или винтовую ориентацию, но большая ее часть не перпендикулярна и не параллельна вектору сдвига; в последнем случае мы имеем дело с дислокацией смешанной ориентации, которая в макро масштабе является плоской кривой.
Рис. 9.15. Сдвиг, создавший смешанную дислокацию АС
Рассмотрим схему атомного строения кристалла со смешанной дислокацией. На рис. 9.15 линия АС ограничивает внутри кристалла зону сдвига АВС. Заштрихована ступенька, образовавшаяся на передней грани кристалла при сдвиге верхней его части относительно нижней по площади АВС. Расположение атомов вдоль линии АС показано на рис. 9.15, где плоскость чертежа является плоскостью скольжения; черные кружки обозначают атомы под этой плоскостью, а белые — над ней. Вблизи точки А на участке АА' дислокация параллельна вектору сдвига и, следовательно, имеет винтовую ориентацию. Вблизи точки С дислокация перпендикулярна вектору сдвига и, следовательно, имеет краевую ориентацию. Вблизи точки С в верхней части кристалла (над плоскостью чертежа) имеется сгущение вертикальных атомных плоскостей и экстраплоскость.
Рис. 9.16 Расположение атомов в области смешанной дислокации. Схема получена при рассмотрении на рис. 10 плоскости АВС со стороны верхней грани кристалла
В отличие от рис.9.2, где мы смотрим на экстраплоскость с ее торца, на рис. 9.15 экстраплоскость рассматривается сверху. Здесь она видна в виде цепочки светлых кружков СС', внутри которых нет черных кружков. Эта цепочка атомов является краем экстраплоскости. Вблизи точки C/ экстраплоскость искривляется и соединяется с вертикальной плоскостью, находящейся под плоскостью скольжения, т. е. экстраплоскость здесь перестает быть неполной атомной плоскостью (экстраплоскостью), и дислокация теряет краевую ориентацию. В промежутке между чисто краевым участком вблизи точки С и чисто винтовым вблизи точки А дислокация имеет смешанную ориентацию, промежуточную между краевой и винтовой. Под действием приложенных касательных напряжений τ зона сдвига, заштрихованная на рис. 16, расширяется. Участок дислокации с чисто краевой ориентацией вблизи точки С скользит в направлении приложенной силы, а участок с чисто винтовой ориентацией вблизи точки А—перпендикулярно этому направлению. Когда вся линия смешанной дислокации выйдет на внешние грани, верхняя часть кристалла окажется сдвинутой относительно нижней в направлении действующих касательных напряжений на один период решетки. Ясно, что в общем случае отдельные участки смешанной дислокации выходят на поверхность кристалла неодновременно.
Рис. 9.17. При скольжении смешанной дислокации АС через весь кристалл верхняя часть его сдвинулась относительно нижней на одно межатомное расстояние
На рис. 9.17,б и 9.18 линия смешанной дислокации оканчивается на гранях кристалла. Но она может образовывать и замкнутые плоские петли внутри кристалла. Отдельные участки дислокационной петли имеют чисто краевую или чисто винтовую ориентацию, а большая часть — смешанную ориентацию.
Плоская петля смешанной дислокации, как и любая дислокация, является границей зоны сдвига. Если вектор сдвига находится в плоскости петли, то петля отделяет область плоскости скольжения внутри нее, где сдвиг уже прошел, от области, лежащей вне петли и еще не охваченной сдвигом. Скольжение развивается при расширении петли. Возможен и противоположный случай, когда область, где сдвиг уже прошел, находится вне петли дислокации. Скольжение в этом случае развивается при сужении петли. Дислокационные петли играют важную роль в процессах пластической деформации.
Из-за наличия участков с винтовой ориентацией дислокационная петля может совершать поперечное скольжение. На рис. 9.18,а показана дислокационная петля, распространявшаяся в плоскости (111) г.ц.к. решетки. Участок петли вблизи точки т, имеющий винтовую ориентацию, из-за встречи с препятствием в плоскости (111) или по другой причине может «соскользнуть» по плоскости поперечного скольжения (111), находящейся под углом к первоначальной плоскости скольжения (рис. 9.18,б). Затем участок петли с винтовой ориентацией способен из плоскости (111) перейти в атомную плоскость, параллельную первоначальной плоскости скольжения (рис. 9.18, в). Многократное повторение этого процесса является множественным поперечным скольжением. В результате петля смешанной дислокации перестает быть плоской. Так как винтовая дислокация легко переходит из одной плоскости в другую, то в общем случае и линия смешанной дислокации и поверхность скольжения не лежат в одной плоскости.
Рис. 9.18 Поперечное и двойное поперечное скольжение петли смешанной дислокации в г.ц.к. решетке.