- •Основы кристаллографии и дефекты кристаллического строения
- •Лекция 1. Основные понятия о кристаллах План лекции
- •1.1. Закон постоянства гранных углов
- •Контрольные вопросы
- •Лекция 2. Структура кристаллов и пространственная
- •План лекции
- •2.1. Элементарная ячейка, её выбор, метрика
- •2.2. Кристаллическая структура
- •2.3. Кристаллографические символы узлов, плоскостей и направлений в кристаллах кубической сингонии
- •2.4. Символы узлов
- •2.5. Символы рядов (ребер, направлений)
- •2.6. Символы плоскостей (граней)
- •Контрольные вопросы
- •3.2. Определение символа атомной плоскости по координатам трёх узлов пространственной решётки
- •3.4. Кристаллографическая символика в гексагональной сингонии
- •Контрольные вопросы
- •Лекция 4. Элементы симметрии конечных фигур План лекции
- •4.1. Понятие о симметрии
- •4.2. Элементы симметрии кристаллических многогранников
- •Обозначение элементов симметрии
- •4.3. Взаимодействие симметрических операций (элементов симметрии)
- •4.4. Осевая теорема Эйлера
- •4.5. Теоремы сложения элементов симметрии
- •4.6. Точечные группы симметрии
- •Контрольные вопросы
- •5.2. Правила кристаллографической установки кристаллов для различных сингоний.
- •5.3. Кристаллографические проекции
- •5.4. Сферическая проекция
- •5.5. Стереографическая проекция
- •5.6. Гномостереографическая проекция
- •Контрольные вопросы
- •План лекции
- •6.1. Классы симметрии
- •6.2. Виды симметрии кристаллов, обладающих единичных направлением
- •6.3. Элементы симметрии бесконечных фигур
- •6.4. Винтовые оси симметрии
- •6.5. Плоскость скользящего отражения
- •6.6 Решетки Бравэ
- •6.7. Условия выбора ячеек Бравэ
- •6.8 Характеристика решеток Бравэ
- •Тип ячейки Бравэ.
- •6.9. Трансляционная группа, базис ячейки
- •6.10. Пример Выбора элементарной ячейки Бравэ
- •Контрольные вопросы
- •Лекция 7. Задачи, решаемые кристаллохимией План лекции
- •7.1 Координационное число, координационный полиэдр, число формульных единиц
- •7. 2. Плотнейшие шаровые упаковки в кристаллах
- •7.3. Основные типы структур
- •7.4. Основные категории кристаллохимии
- •Контрольные вопросы
- •Лекция 8. Точечные дефекты План лекции
- •8.1. Понятие об идеальном и реальном кристалле
- •8.2. Классификация дефектов кристаллической решетки
- •8.3. Точечные дефекты
- •8.4. Искажение решетки вокруг точечных дефектов
- •8.5. Термодинамика точечных дефектов
- •8.6. Миграция точечных дефектов
- •8.6.1.Миграция вакансий
- •8.6.2. Миграция межузельных атомов
- •8.6.3.Миграция примесных атомов
- •Контрольные вопросы
- •Лекция 9. Основные типы дислокаций и их движение План лекции
- •9.2. Скольжение краевой дислокации
- •9.3.Переползание краевой дислокации
- •9.6. Смешанные дислокации и их движение
- •Контрольные вопросы
- •Лекция 10. Количественные характеристики дислокаций План лекции
- •10.2 Вектор Бюргерса
- •10.3. Плотность дислокаций
- •Контрольные вопросы
- •Лекция 11. Упругие свойства дислокаций План лекции
- •11.1. Энергия дислокации
- •11.2. Силы, действующие на дислокацию
- •11.3. Упругое взаимодействие параллельных краевых дислокаций
- •11.4. Упругое взаимодействие параллельных винтовых дислокации
- •Контрольные вопросы
- •Лекция 13. Пересечение дислокаций План лекции
- •13.1. Пересечение краевых дислокаций
- •13.2. Пересечение краевой и винтовой дислокаций
- •13.3. Пересечение винтовых дислокаций
- •13.4. Движение дислокации с порогами
- •13.5. Пересечение растянутых дислокаций
- •Контрольные вопросы
- •14.1.2 Атмосферы Снука
- •14.1.3. Атмосферы Сузуки
- •1.4.2. Взаимодействие дислокаций с вакансиями и межузельными атомами
- •Контрольные вопросы
- •Лекция 15. Образование дислокаций План лекции
- •15.1. Происхождение дислокаций
- •15.2. Размножение дислокаций при пластической деформации Источник Франка — Рида
- •Контрольные вопросы
- •Лекция 16. Границы зерен и субзерен План лекции
- •16.1.Границы кручения и наклона
- •16.2. Малоугловые границы
- •16.3. Высокоугловые границы
- •16.4. Специальные и произвольные границы
- •16.5. Зернограничные дислокации
- •План лекции
- •17.2. Торможение дислокаций при их взаимодействии с другими дислокациями и границами зерен
- •17.3. Торможение дислокаций дисперсными частицами
- •17.4. Выгибание дислокаций между дисперсными частицами
- •17.5. Локальное поперечное скольжение
- •17.6. Перерезание дислокациями дисперсных частиц
- •17.7.2. Торможение дислокаций в твердых растворах
8.4. Искажение решетки вокруг точечных дефектов
Вокруг пустого узла или межузельного атома решетка искажена. Точечный дефект можно рассматривать в первом приближении как центр сжатия или расширения в упругой среде. Из математической теории упругого поля в непрерывной среде следует, что напряжения и деформации вокруг такого центра убывают обратно пропорционально третьей степени расстояния от него Упругая деформация, вызванная точечным дефектом, должна распространяться от него до самой поверхности кристалла. Но только на расстоянии одного—двух атомных диаметров от центра дефекта создаются заметные смещения. Эта область называется ядро дефекта. Расположение атомов в ядре нельзя описать, исходя из теории упругости, которая оперирует понятиями сплошной среды и не учитывает дискретного атомного строения металла. Учет сил межатомного взаимодействия приводит к следующим результатам, которые не очевидны при простом рассмотрении, например, вакансий как центров сжатия.
В г. ц. к. решетке вокруг вакансии ближайшие соседи смещены в ее сторону. Второй слой атомов смещен по направлению от вакансии.
Рис. 8.3. Направления смещения атомов вокруг вакансии в плоскости {100} г. ц. к. решетки
На рис. 8.3 показано расположение атомов в плоскости куба {100} вокруг вакансии (пунктирный круг) в центре грани кубической ячейки (атомы не смещены, так как место будущей вакансии пока еще заполнено). Атомы первого слоя находятся по отношению к вакантному узлу на направлениях <110>, а атомы второго слоя—на направлениях <100>. Направления смещения атомов обоих слоев указаны стрелками. Таким образом, поле смещений сильно анизотропно — по разным направлениям смещения имеют разный знак и разную величину.
В г.ц.к. решетке расчетная величина смещения атомов первой координационной сферы, направленного в сторону вакансии, составляет около 2 % межатомного расстояния, а величина смещения в противоположном направлении атомов второй координационной сферы на порядок меньше. В плотнейшей упаковке, какой является г.ц.к. кристалл, смещение атомов первой координационной сферы в сторону вакансии быстро тормозится их взаимным отталкиванием. Расчеты показывают, что эти смещения в о.ц.к. решетке в несколько раз больше, но все равно не превышают 10 % межатомного расстояния.
Из приведенных данных видно, что вокруг вакансий смещения соседних атомов очень невелики и составляют доли межатомного расстояния. Естественно, что вокруг межузельного атома в плотной упаковке смещение соседей больше, чем вокруг вакансий.
Быстрое затухание атомных смещений при удалении от точечного дефекта означает, что межатомные силы являются силами близкодействия, резко падающими при увеличении расстояния. Поскольку вакансия стремится стянуть решетку вокруг себя, то ее следует рассматривать как центр всестороннего растяжения. Межузельный атом — это центр напряжений сжатия.
8.5. Термодинамика точечных дефектов
Реальный металл никогда не имеет идеально правильной кристаллической решетки. Ему одновременно необходимы и порядок, и беспорядок. Беспорядок может проявлять себя в различных признаках, быть представленным в различной степени,— но обязан быть! — и, как выясняется, степень беспорядка с ростом температуры должна увеличиваться. Беспорядок — непременный признак жизни кристалла
Вначале о происхождении порядка в кристалле, которое проще осмыслить, если предположить температуру кристалла равной нулю и мысленно избавиться от всяких признаков беспорядка.
Упорядоченное расположение атомов в кристалле есть непосредственное следствие фундаментального закона природы: устойчивыми оказываются такие состояния, при которых энергия системы минимальна. В нашем случае «система» — это кристалл, а энергия — это сумма энергий взаимодействия между всеми парами атомов, составляющих кристалл. Минимальная энергия имеет определенное значение, и среди прочих возможных положений атомов ей должно соответствовать некоторое выделенное, т. е. упорядоченное, расположение атомов. Среди необозримого числа неупорядоченных положений оно тем-то и выделено, что отличается порядком в расположении атомов. Какому расположению будет соответствовать порядок — неважно, а важно лишь то, что порядок!
Изложенное немного туманное рассуждение можно прояснить, обсудив элементарную задачу о расположении атомов в кристалле, состоящем всего из трех одинаковых атомов, находящихся на одной прямой и скрепленных одинаковыми пружинками. Этакая предельно упрощенная модель одномерного кристалла. Оказывается, что если первый и третий атомы закрепить, то пружинки, с помощью которых эти атомы взаимодействуют со вторым, будут обладать минимальной энергией в случае, когда второй атом расположен посредине между первым и третьем. Избранная упорядоченная структура, когда расстояние l1,2, равно расстоянию l2,3 оказывается выгоднее любой «неупорядоченной», когда l1,2 и l2,3 не равны.
Решение этой задачи почти самоочевидно: сместить в одном и другом направлении второй атом из среднего положения, когда l1,2 = l2,3—это значит растянуть одну пружинку и сжать другую. При этом энергия, запасенная и каждой из пружинок, возрастает, а это и означает, что расположение, соответствующее минимуму энергии, должно быть упорядоченным (l1,2 = l2,3).
Теперь о происхождении беспорядка.
Вначале, не уточняя структуру очага беспорядка, можно утверждать: его появление обусловлено тем, чти и повышением температуры увеличивается энергия теплового движения атомов, оно становится более активным и в разных участках кристалла нарушается идеальный порядок в расположении атомов. Казалось бы, ну и пусть себе движение становится более активным, а центры, вокруг которых происходят тепловые колебания атомов или ионов, могли бы оставаться на месте и порядок оставался бы порядком. Такое положение вроде бы ничему не противоречит, а исполнись оно, порядок сохранился бы.
Желание видеть в кристалле идеальный порядок, оказывается, противоречит законам природы. Дело здесь вот в чем. Для возникновения очага беспорядка — например, атом покинул свое законное место, которое он занимал в узле решетки, и перескочил в зазор между узлами, в междоузлие,— необходима некоторая энергия. В области будущего очага беспорядка эта энергия, заимствованная из энергии теплового движения атомов ближайшего окружения, может появиться случайно. Ближайшие атомы колеблются не строго «согласованно» и случайное стечение обстоятельств может привести к такому перераспределению энергии их тепловых колебаний, при котором в области будущего очага беспорядка появится энергия, достаточная для рождения очага. Говорят так; появилась необходимая энергетическая флуктуация. С ростом температуры, когда активность теплового движения возрастает, должна возрастать и частота флуктуаций энергии, достаточная для возникновения очагов беспорядка, и следовательно, концентрация очагов также должна расти.
Здесь необходимо подчеркнуть, что флуктуация в кристалле — эффект, как говорят, коллективный, в нем участвует группа атомов, а не только тот единственный, который, например, оказался выброшенным из узла в междоузлие. Просто именно он попал в область пика флуктуаций, а мог бы попасть и любой иной из коллектива атомов, оказавшихся в очаге флуктуаций.
Итак, и флуктуации энергии, и очаги беспорядка возникают самопроизвольно. Это, однако, не означает, что появление очагов беспорядка в кристалле сопровождается увеличением его энергии, ее удалением от требующегося термодинамикой минимума. Понять это можно так. Для того чтобы при повышенной температуре поддерживать в кристалле идеальный порядок (все атомы в узлах, все узлы заняты атомами!), надо было бы энергию тратить на то, чтобы гасить самопроизвольно возникающие энергетические флуктуации. Так вот, эта энергия, привнесенная в кристалл извне, делала бы его энергию заведомо не минимальной. А это и значит, что очаги беспорядка возникать будут просто потому, что не возникать они не могут. Очаги беспорядка — условие существования кристалла при температуре, отличной от нуля. Они — непременный признак жизни кристалла. Я.Е Гегузин приводит пример, помогающий понять оправданность беспорядка. Если средняя кинетическая энергия одной молекулы в идеальном газе kТ/2, то п молекул имеют энергию nkT/2. Эта энергия не изменится, если объем газа увеличится, и, казалось бы, нет оправдания стремлению газа расширяться в пустоту. А между тем газ это самопроизвольно делает при первой же возможности, а оправдание есть и состоит оно в том, что, заняв большой объем, газ окажется в состоянии с большей степенью беспорядка, чем в малом объеме. И самопроизвольное возникновение беспорядка в кристалле, и самопроизвольное расширение газа в пустоту — следствия одной и той же термодинамически оправданной тенденции. Напомню: рассказанное — не доказательство, а всего лишь пример!
Коротко о структуре очагов беспорядка. Главным образом, с точки зрения «прока» от них. В этом случае лучше вообще говорить не о структуре, а об энергетической флуктуации, необходимой для появления очага данного типа. Очевидно следующее; чем больше нарушение идеальной структуры кристалла в очаге, тем большая нужна флуктуация энергии и тем меньше таких очагов появится при данной температуре. Поэтому очаги значительного беспорядка (поры, трещины, границы) в кристалле самопроизвольно появляться не будут. В энергетических единицах- они стоят дорого и кристаллу противопоказаны, прока от них нет, одни расходы- А вот мелкие очаги беспорядка (лишний атом в междоузлии или вакантная позиция в узле решетки) в кристалле будут: в энергетических единицах стоят они недорого, а без очагов беспорядка, как мы выяснили, кристалл существовать не может.
Итак, в беспорядке есть прок! Однако прок проком, но должен все-таки существовать естественный предел этому беспорядку, иначе кристалл — образование упорядоченное — потеряет право на существование.
Обсудим меру необходимого кристаллу беспорядка, избрав в качестве примера очага беспорядка в кристалле узел, не замещенный атомом, т.е. вакансию. Попытаемся выяснить, сколько вакансий должно быть в кристалле при данной температуре, чтобы удовлетворить его потребность в «вакансионном беспорядке». Вопрос надо уточнить, так как и крупинка в солонке— кристалл, и глыба каменной соли — кристалл. И поэтому следует говорить не о числе вакансий, а об их концентрации, т. е. об отношении числа вакантных узлов nv к числу всех узлов кристаллической решетки N:
Cv=nv/N
Так как вакансия возникает вслед за появлением достаточной флуктуации энергии, может возникнуть опасение, что число вакансий все время будет возрастать, потому что источники пустоты неисчерпаемы! Этого не произойдет, так как все те вакансии, без которых кристалл может обойтись, родившись, исчезнут!
В сложном переплетении процессов рождения и исчезновения вакансий при данной температуре в кристалле автоматически поддерживается строго определенная, необходимая ему их концентрация. Именуют ее равновесной. С ростом температуры равновесная концентрация вакансий будет возрастать. Это подобно тому, что происходит в объеме под колпаком, где стоит открытый сосуд с водой. С поверхности воды некоторые молекулы испаряются, а иные конденсируются на нее, но при каждой данной температуре давление водяного пара под колпаком вполне определенное. Если считать, что образование одной вакансии предполагает необходимость во флуктуации энергии Uv и если воспользоваться известным в физике законом (он называется экспоненциальным), который утверждает, что вероятность флуктуации определенной энергии U равна e-U/kT, то концентрация вакансий определится формулой:
Переход от «вероятности» к «концентрации» следует пояснить. Вероятность того, что, наугад избрав узел в решетке, мы обнаружим его вакантным, очевидно, равна отношению числа вакантных узлов решетки к общему числу. Именно это отношение выше мы с полным основанием сочли формальным определением концентрации.
Для примера оценим значения cv в золоте при двух температурах: комнатной (Т=300 К) и температуре плавления (Т =1336 К). Энергия образования вакансии в золоте Uv=1,6×1012эрг. Вспомнив, что постоянная Больцмана k=1,38×10-16 эрг/К, легко получить интересующие нас величины; при комнатной температуре одна вакансия приходится на 1015 атомов, а при температуре плавления одна вакансия — на 104 атомов. Кристалл, как выясняется, довольствуется малым числом вакансий, но отказаться от них и не может, и не имеет права.
С температурой, нарастающей по экспоненциальному закону, беспорядок в кристалле приводит к тому, что многие его характеристики изменяются, подчиняясь этому же закону.
