
- •Основы кристаллографии и дефекты кристаллического строения
- •Лекция 1. Основные понятия о кристаллах План лекции
- •1.1. Закон постоянства гранных углов
- •Контрольные вопросы
- •Лекция 2. Структура кристаллов и пространственная
- •План лекции
- •2.1. Элементарная ячейка, её выбор, метрика
- •2.2. Кристаллическая структура
- •2.3. Кристаллографические символы узлов, плоскостей и направлений в кристаллах кубической сингонии
- •2.4. Символы узлов
- •2.5. Символы рядов (ребер, направлений)
- •2.6. Символы плоскостей (граней)
- •Контрольные вопросы
- •3.2. Определение символа атомной плоскости по координатам трёх узлов пространственной решётки
- •3.4. Кристаллографическая символика в гексагональной сингонии
- •Контрольные вопросы
- •Лекция 4. Элементы симметрии конечных фигур План лекции
- •4.1. Понятие о симметрии
- •4.2. Элементы симметрии кристаллических многогранников
- •Обозначение элементов симметрии
- •4.3. Взаимодействие симметрических операций (элементов симметрии)
- •4.4. Осевая теорема Эйлера
- •4.5. Теоремы сложения элементов симметрии
- •4.6. Точечные группы симметрии
- •Контрольные вопросы
- •5.2. Правила кристаллографической установки кристаллов для различных сингоний.
- •5.3. Кристаллографические проекции
- •5.4. Сферическая проекция
- •5.5. Стереографическая проекция
- •5.6. Гномостереографическая проекция
- •Контрольные вопросы
- •План лекции
- •6.1. Классы симметрии
- •6.2. Виды симметрии кристаллов, обладающих единичных направлением
- •6.3. Элементы симметрии бесконечных фигур
- •6.4. Винтовые оси симметрии
- •6.5. Плоскость скользящего отражения
- •6.6 Решетки Бравэ
- •6.7. Условия выбора ячеек Бравэ
- •6.8 Характеристика решеток Бравэ
- •Тип ячейки Бравэ.
- •6.9. Трансляционная группа, базис ячейки
- •6.10. Пример Выбора элементарной ячейки Бравэ
- •Контрольные вопросы
- •Лекция 7. Задачи, решаемые кристаллохимией План лекции
- •7.1 Координационное число, координационный полиэдр, число формульных единиц
- •7. 2. Плотнейшие шаровые упаковки в кристаллах
- •7.3. Основные типы структур
- •7.4. Основные категории кристаллохимии
- •Контрольные вопросы
- •Лекция 8. Точечные дефекты План лекции
- •8.1. Понятие об идеальном и реальном кристалле
- •8.2. Классификация дефектов кристаллической решетки
- •8.3. Точечные дефекты
- •8.4. Искажение решетки вокруг точечных дефектов
- •8.5. Термодинамика точечных дефектов
- •8.6. Миграция точечных дефектов
- •8.6.1.Миграция вакансий
- •8.6.2. Миграция межузельных атомов
- •8.6.3.Миграция примесных атомов
- •Контрольные вопросы
- •Лекция 9. Основные типы дислокаций и их движение План лекции
- •9.2. Скольжение краевой дислокации
- •9.3.Переползание краевой дислокации
- •9.6. Смешанные дислокации и их движение
- •Контрольные вопросы
- •Лекция 10. Количественные характеристики дислокаций План лекции
- •10.2 Вектор Бюргерса
- •10.3. Плотность дислокаций
- •Контрольные вопросы
- •Лекция 11. Упругие свойства дислокаций План лекции
- •11.1. Энергия дислокации
- •11.2. Силы, действующие на дислокацию
- •11.3. Упругое взаимодействие параллельных краевых дислокаций
- •11.4. Упругое взаимодействие параллельных винтовых дислокации
- •Контрольные вопросы
- •Лекция 13. Пересечение дислокаций План лекции
- •13.1. Пересечение краевых дислокаций
- •13.2. Пересечение краевой и винтовой дислокаций
- •13.3. Пересечение винтовых дислокаций
- •13.4. Движение дислокации с порогами
- •13.5. Пересечение растянутых дислокаций
- •Контрольные вопросы
- •14.1.2 Атмосферы Снука
- •14.1.3. Атмосферы Сузуки
- •1.4.2. Взаимодействие дислокаций с вакансиями и межузельными атомами
- •Контрольные вопросы
- •Лекция 15. Образование дислокаций План лекции
- •15.1. Происхождение дислокаций
- •15.2. Размножение дислокаций при пластической деформации Источник Франка — Рида
- •Контрольные вопросы
- •Лекция 16. Границы зерен и субзерен План лекции
- •16.1.Границы кручения и наклона
- •16.2. Малоугловые границы
- •16.3. Высокоугловые границы
- •16.4. Специальные и произвольные границы
- •16.5. Зернограничные дислокации
- •План лекции
- •17.2. Торможение дислокаций при их взаимодействии с другими дислокациями и границами зерен
- •17.3. Торможение дислокаций дисперсными частицами
- •17.4. Выгибание дислокаций между дисперсными частицами
- •17.5. Локальное поперечное скольжение
- •17.6. Перерезание дислокациями дисперсных частиц
- •17.7.2. Торможение дислокаций в твердых растворах
Лекция 2. Структура кристаллов и пространственная
решётка
План лекции
1. Элементарная ячейка, её выбор, метрика.
2. Кристаллическая структура материалов.
3. Ретикулярная плотность сетки.
4. Кристаллографические символы узлов, плоскостей и направлений в кристаллах кубической сингонии.
Расстояния между частицами в большинстве кристаллических веществ составляют несколько десятых долей нанометра, поэтому даже на длине в 1 мм в кристалле располагается ~107 частиц, что практически можно считать бесконечным числом.
Кратчайшее из возможных расстояний между одинаковыми точками в ряду называется элементарной (кратчайшей) трансляцией или периодом идентичности (рис. 2.1); иногда употребляют названия период трансляции или параметр ряда.
|
Рис 2.1. Симметричный бесконечный ряд с трансляцией а
|
Если сдвинуть точки бесконечного ряда на один период идентичности вдоль направления трансляции, то все одинаковые точки передвинутся на одинаковые расстояния, ряд совместится сам с собой, так что вид его не нарушится. Так производится симметричное преобразование: ряд симметрично сдвигается на один период трансляции а. Симметричное преобразование, с помощью которого точка повторяется в пространстве, называется преобразованием с помощью трансляции или просто трансляцией. Повторяя какую-либо точку с помощью трансляции, получим бесконечный периодический ряд идентичных точек на расстояниях а, 2а, За, ..., па. Характеристикой этого ряда является кратчайшая трансляция а. Одинаковые точки, связанные между собой трансляциями а в бесконечном ряду, называются узлами ряда.
2.1. Элементарная ячейка, её выбор, метрика
Параллелограммы, вершины которых являются узлами, называются ячейками сетки. Плоскую сетку можно определить любой парой основных трансляций, не лежащих на одной прямой (рис. 2.2, а). Выбор такой пары основных параметров плоской сетки не однозначен. Принято выбирать элементарные трансляции именно те, которые лучше всего отражают симметрию сетки.
Выберем в плоской сетке элементарную ячейку; повторяя ее с помощью одинаковых трансляций, мы получим плоскую сетку, заполняющую всю плоскость без промежутков. Элементарную ячейку можно выбирать по-разному (рис. 2.2, б), но принято выбирать ее так. чтобы она удовлетворяла следующим условиям:
1)наилучшим образом отражала симметрию сетки;
2)имела бы прямые углы, если это можно;
3)обладала бы наименьшей площадью.
а |
б |
в
|
|
Рис. 2.2. Плоская сетка: а — различные основные трансляции; б — различные элементарные ячейки; в — примитивная элементарная ячейка, построенная на двух кратчайших трансляциях и хорошо отражающая симметрию сетки. |
Примитивной элементарной ячейкой называется ячейка, внутри которой нет узлов (рис. 2.2., в).
Число узлов на единицу площади называется ретикулярной плотностью сетки.
Таким образом, плоскую сетку можно определить тремя способами:
1) как пару элементарных неколлинеарных трансляций, или
2) как систему эквивалентных узлов, которые могут быть получены один из другого с помощью параллельных переносов, или
3)как систему одинаковых элементарных ячеек, прилегающих друг к другу, заполняющих плоскость без промежутков и совмещающихся друг с другом с помощью параллельных переносов.
Параллелепипед, построенный на трех элементарных трансляциях a, b, c называется элементарным параллелепипедом или элементарной ячейкой.
Набор элементарных углов α, β, γ и элементарных трансляций a, b, c называется метрикой (рис. 2.3)
x
y
z
γ
β
α
a
b
c |
Рис. 2.3. Элементарный параллелепипед
|
Выбор основных трансляций в структуре кристалла очень важен, потому что ими определяются кристаллографические системы координат. Итак, пространственная решетка - это бесконечное трехмерное периодическое образование, или, точнее, это геометрическое построение, с помощью которого в кристаллическом пространстве выявляются одинаковые точки. Структура кристалла - это конкретное расположение частиц в пространстве.
Пространственная решетка – это способ представления периодичности повторения в пространстве отдельных материальных частиц или групп частиц (или «пустых мест» между частицами).