
- •Основы кристаллографии и дефекты кристаллического строения
- •Лекция 1. Основные понятия о кристаллах План лекции
- •1.1. Закон постоянства гранных углов
- •Контрольные вопросы
- •Лекция 2. Структура кристаллов и пространственная
- •План лекции
- •2.1. Элементарная ячейка, её выбор, метрика
- •2.2. Кристаллическая структура
- •2.3. Кристаллографические символы узлов, плоскостей и направлений в кристаллах кубической сингонии
- •2.4. Символы узлов
- •2.5. Символы рядов (ребер, направлений)
- •2.6. Символы плоскостей (граней)
- •Контрольные вопросы
- •3.2. Определение символа атомной плоскости по координатам трёх узлов пространственной решётки
- •3.4. Кристаллографическая символика в гексагональной сингонии
- •Контрольные вопросы
- •Лекция 4. Элементы симметрии конечных фигур План лекции
- •4.1. Понятие о симметрии
- •4.2. Элементы симметрии кристаллических многогранников
- •Обозначение элементов симметрии
- •4.3. Взаимодействие симметрических операций (элементов симметрии)
- •4.4. Осевая теорема Эйлера
- •4.5. Теоремы сложения элементов симметрии
- •4.6. Точечные группы симметрии
- •Контрольные вопросы
- •5.2. Правила кристаллографической установки кристаллов для различных сингоний.
- •5.3. Кристаллографические проекции
- •5.4. Сферическая проекция
- •5.5. Стереографическая проекция
- •5.6. Гномостереографическая проекция
- •Контрольные вопросы
- •План лекции
- •6.1. Классы симметрии
- •6.2. Виды симметрии кристаллов, обладающих единичных направлением
- •6.3. Элементы симметрии бесконечных фигур
- •6.4. Винтовые оси симметрии
- •6.5. Плоскость скользящего отражения
- •6.6 Решетки Бравэ
- •6.7. Условия выбора ячеек Бравэ
- •6.8 Характеристика решеток Бравэ
- •Тип ячейки Бравэ.
- •6.9. Трансляционная группа, базис ячейки
- •6.10. Пример Выбора элементарной ячейки Бравэ
- •Контрольные вопросы
- •Лекция 7. Задачи, решаемые кристаллохимией План лекции
- •7.1 Координационное число, координационный полиэдр, число формульных единиц
- •7. 2. Плотнейшие шаровые упаковки в кристаллах
- •7.3. Основные типы структур
- •7.4. Основные категории кристаллохимии
- •Контрольные вопросы
- •Лекция 8. Точечные дефекты План лекции
- •8.1. Понятие об идеальном и реальном кристалле
- •8.2. Классификация дефектов кристаллической решетки
- •8.3. Точечные дефекты
- •8.4. Искажение решетки вокруг точечных дефектов
- •8.5. Термодинамика точечных дефектов
- •8.6. Миграция точечных дефектов
- •8.6.1.Миграция вакансий
- •8.6.2. Миграция межузельных атомов
- •8.6.3.Миграция примесных атомов
- •Контрольные вопросы
- •Лекция 9. Основные типы дислокаций и их движение План лекции
- •9.2. Скольжение краевой дислокации
- •9.3.Переползание краевой дислокации
- •9.6. Смешанные дислокации и их движение
- •Контрольные вопросы
- •Лекция 10. Количественные характеристики дислокаций План лекции
- •10.2 Вектор Бюргерса
- •10.3. Плотность дислокаций
- •Контрольные вопросы
- •Лекция 11. Упругие свойства дислокаций План лекции
- •11.1. Энергия дислокации
- •11.2. Силы, действующие на дислокацию
- •11.3. Упругое взаимодействие параллельных краевых дислокаций
- •11.4. Упругое взаимодействие параллельных винтовых дислокации
- •Контрольные вопросы
- •Лекция 13. Пересечение дислокаций План лекции
- •13.1. Пересечение краевых дислокаций
- •13.2. Пересечение краевой и винтовой дислокаций
- •13.3. Пересечение винтовых дислокаций
- •13.4. Движение дислокации с порогами
- •13.5. Пересечение растянутых дислокаций
- •Контрольные вопросы
- •14.1.2 Атмосферы Снука
- •14.1.3. Атмосферы Сузуки
- •1.4.2. Взаимодействие дислокаций с вакансиями и межузельными атомами
- •Контрольные вопросы
- •Лекция 15. Образование дислокаций План лекции
- •15.1. Происхождение дислокаций
- •15.2. Размножение дислокаций при пластической деформации Источник Франка — Рида
- •Контрольные вопросы
- •Лекция 16. Границы зерен и субзерен План лекции
- •16.1.Границы кручения и наклона
- •16.2. Малоугловые границы
- •16.3. Высокоугловые границы
- •16.4. Специальные и произвольные границы
- •16.5. Зернограничные дислокации
- •План лекции
- •17.2. Торможение дислокаций при их взаимодействии с другими дислокациями и границами зерен
- •17.3. Торможение дислокаций дисперсными частицами
- •17.4. Выгибание дислокаций между дисперсными частицами
- •17.5. Локальное поперечное скольжение
- •17.6. Перерезание дислокациями дисперсных частиц
- •17.7.2. Торможение дислокаций в твердых растворах
6.2. Виды симметрии кристаллов, обладающих единичных направлением
Для вывода всех возможных классов симметрии кристаллов примем ось симметрии за основной порождающий элемент симметрии. Добавляя поочередно другие порождающие элементы, образуем все возможные их сочетания.
Сначала рассмотрим случаи, когда выбранная ось симметрии является единичным направлением и остается единичной при добавлении других элементов симметрии. Поскольку в высшей категории нет единичных направлений, отложим пока се рассмотрение.
Плоскость симметрии может проходить вдоль единичного направления или нормально к нему, но не может располагаться косо, так как, отразившись в косой плоскости, единичное направление повторилось бы, а значит, перестало бы быть единичным. По этой же причине ось 2 может быть перпендикулярна единичному направлению, но не может составлять с ним косой угол; другие оси симметрии вообще не могут сочетаться с единичной осью. Центр симметрии, если он находится на единичном направлении, оставит это направление единичным. Итак, в кристаллах с единичными направлениями, т. е. в низшей и средней категориях, возможны сочетания, приведенные на рис. 6.1.
С
С
m
m
а)
б)
в)
г)
д)
е)
Рис. 6.1. Классы симметрии средней и низшей категорий
Простейший, или примитивный, класс симметрии. Имеется только одна ось симметрии n-го порядка вдоль единичного направления (рис. 6.1, а);
Центральные классы симметрии. К единственной оси добавляется центр симметрии (рис.6.1,б). При этом ось остается единственной, однако не только эта ось, но и никакое другое направление в кристалле уже не может быть полярным.
Планальные классы симметрии. Вдоль порождающей оси симметрии проводится плоскость симметрии (рис.6.1, в).
Во всех планальных классах единственная ось симметрии полярна. В классе m, кроме того, любое направление, лежащее в самой плоскости симметрии, будет единичным ни полярным.
Любое направление, не лежащее в плоскости симметрии, может отразиться в ней, а значит, оно уже не будет ни единичным, ни полярным.
Международный символ планального класса ромбической сингонии записывается как mm2, потому что по правилам установки в этом случае ось 2 параллельна оси Z, а по правилам записи символа элемент симметрии, параллельной оси Z , должен стоять на 3-й позиции.
Символы 4mm и 6mm можно было бы записывать и сокращенно, т.е. 4mm и 6m, но в символе принято выделять координатные (2-я позиция) и диагональные (3-я позиция) элементы симметрии. Символ 4mm расшифровывается так: ось 4—главная, единственная ось симметрии [001], вдоль нее проходят две координатные плоскости симметрии (100) и (010); между ними проходят две диагональные плоскости симметрии. Аналогично читается символ 6mm.
Аксиальные классы симметрии получаются, если добавить ось 2 перпендикулярно единственной оси симметрии (рис. 6.1, г).
В аксиальных классах симметрии единственная ось неполярна, потому что ее концы могут совместиться друг с другом поворотом вокруг оси 2. Однако полярные направления в этих кристаллах есть.
Добавляя к порождающей оси симметрии поперечную плоскость m (рис.6.1, д), получим лишь одно новое сочетание – инверсионно-примитивный класс.
Планаксиальные классы симметрии получаются, если к порождающей оси симметрии n-го порядка добавить центры симметрии, параллельные плоскости симметрии и перпендикулярные оси 2 (рис.6.1,е). Для четных осей при этом появляются еще и поперечные плоскости m. В планаксиальных классах нет полярных направлений.