
- •Основы кристаллографии и дефекты кристаллического строения
- •Лекция 1. Основные понятия о кристаллах План лекции
- •1.1. Закон постоянства гранных углов
- •Контрольные вопросы
- •Лекция 2. Структура кристаллов и пространственная
- •План лекции
- •2.1. Элементарная ячейка, её выбор, метрика
- •2.2. Кристаллическая структура
- •2.3. Кристаллографические символы узлов, плоскостей и направлений в кристаллах кубической сингонии
- •2.4. Символы узлов
- •2.5. Символы рядов (ребер, направлений)
- •2.6. Символы плоскостей (граней)
- •Контрольные вопросы
- •3.2. Определение символа атомной плоскости по координатам трёх узлов пространственной решётки
- •3.4. Кристаллографическая символика в гексагональной сингонии
- •Контрольные вопросы
- •Лекция 4. Элементы симметрии конечных фигур План лекции
- •4.1. Понятие о симметрии
- •4.2. Элементы симметрии кристаллических многогранников
- •Обозначение элементов симметрии
- •4.3. Взаимодействие симметрических операций (элементов симметрии)
- •4.4. Осевая теорема Эйлера
- •4.5. Теоремы сложения элементов симметрии
- •4.6. Точечные группы симметрии
- •Контрольные вопросы
- •5.2. Правила кристаллографической установки кристаллов для различных сингоний.
- •5.3. Кристаллографические проекции
- •5.4. Сферическая проекция
- •5.5. Стереографическая проекция
- •5.6. Гномостереографическая проекция
- •Контрольные вопросы
- •План лекции
- •6.1. Классы симметрии
- •6.2. Виды симметрии кристаллов, обладающих единичных направлением
- •6.3. Элементы симметрии бесконечных фигур
- •6.4. Винтовые оси симметрии
- •6.5. Плоскость скользящего отражения
- •6.6 Решетки Бравэ
- •6.7. Условия выбора ячеек Бравэ
- •6.8 Характеристика решеток Бравэ
- •Тип ячейки Бравэ.
- •6.9. Трансляционная группа, базис ячейки
- •6.10. Пример Выбора элементарной ячейки Бравэ
- •Контрольные вопросы
- •Лекция 7. Задачи, решаемые кристаллохимией План лекции
- •7.1 Координационное число, координационный полиэдр, число формульных единиц
- •7. 2. Плотнейшие шаровые упаковки в кристаллах
- •7.3. Основные типы структур
- •7.4. Основные категории кристаллохимии
- •Контрольные вопросы
- •Лекция 8. Точечные дефекты План лекции
- •8.1. Понятие об идеальном и реальном кристалле
- •8.2. Классификация дефектов кристаллической решетки
- •8.3. Точечные дефекты
- •8.4. Искажение решетки вокруг точечных дефектов
- •8.5. Термодинамика точечных дефектов
- •8.6. Миграция точечных дефектов
- •8.6.1.Миграция вакансий
- •8.6.2. Миграция межузельных атомов
- •8.6.3.Миграция примесных атомов
- •Контрольные вопросы
- •Лекция 9. Основные типы дислокаций и их движение План лекции
- •9.2. Скольжение краевой дислокации
- •9.3.Переползание краевой дислокации
- •9.6. Смешанные дислокации и их движение
- •Контрольные вопросы
- •Лекция 10. Количественные характеристики дислокаций План лекции
- •10.2 Вектор Бюргерса
- •10.3. Плотность дислокаций
- •Контрольные вопросы
- •Лекция 11. Упругие свойства дислокаций План лекции
- •11.1. Энергия дислокации
- •11.2. Силы, действующие на дислокацию
- •11.3. Упругое взаимодействие параллельных краевых дислокаций
- •11.4. Упругое взаимодействие параллельных винтовых дислокации
- •Контрольные вопросы
- •Лекция 13. Пересечение дислокаций План лекции
- •13.1. Пересечение краевых дислокаций
- •13.2. Пересечение краевой и винтовой дислокаций
- •13.3. Пересечение винтовых дислокаций
- •13.4. Движение дислокации с порогами
- •13.5. Пересечение растянутых дислокаций
- •Контрольные вопросы
- •14.1.2 Атмосферы Снука
- •14.1.3. Атмосферы Сузуки
- •1.4.2. Взаимодействие дислокаций с вакансиями и межузельными атомами
- •Контрольные вопросы
- •Лекция 15. Образование дислокаций План лекции
- •15.1. Происхождение дислокаций
- •15.2. Размножение дислокаций при пластической деформации Источник Франка — Рида
- •Контрольные вопросы
- •Лекция 16. Границы зерен и субзерен План лекции
- •16.1.Границы кручения и наклона
- •16.2. Малоугловые границы
- •16.3. Высокоугловые границы
- •16.4. Специальные и произвольные границы
- •16.5. Зернограничные дислокации
- •План лекции
- •17.2. Торможение дислокаций при их взаимодействии с другими дислокациями и границами зерен
- •17.3. Торможение дислокаций дисперсными частицами
- •17.4. Выгибание дислокаций между дисперсными частицами
- •17.5. Локальное поперечное скольжение
- •17.6. Перерезание дислокациями дисперсных частиц
- •17.7.2. Торможение дислокаций в твердых растворах
5.5. Стереографическая проекция
За плоскость стереографической проекции Q выбираем экваториальную плоскость, на которую сфера проектируется в виде круга проекции. В одном из полюсов этого круга помещается точка зрения («глазная точка») S.
Чтобы спроектировать прямую ОА, проводим линию АS от полюсной точки А этого направления на сфере проекций до точки зрения S. Точка «а» пересечения линии АS с кругом проекций и есть стереографическая проекция направления ОА (рис.5.17).
Чтобы не загружать чертеж, обычно проектируются только пересечения линий с верхним полушарием сферы.
Стереографические проекции направления изображаются точками внутри круга проекций, причем вертикальное направление проектируется как точка в центре круга проекций, горизонтальное – как два выхода на окружность экватора.
Для нахождения стереографической проекции плоскости R необходимо перенести плоскость параллельно самой себе в центр проекций, затем продлить плоскость до пересечения её со сферой. В результате пересечения на сфере получается дуга большого круга a,в,d. После соединения всех точек этой окружности с точкой зрения S, образуется проецирующий конус из лучей зрения Sа, Sв, Sd. Результат пересечения проектирующего конуса с плоскостью проекций Q соответствует стереографической проекции заданной плоскости (рис. 5.18).
Стереографические проекции горизонтальных плоскостей совпадают с окружностями круга проекций, проекции вертикальных плоскостей – с диаметром круга проекций, а проекции наклонных плоскостей изображают дугами, опирающимися на концы диаметра (рис.5.19).
Стереографические проекции применяются главным образом для изображения комплекса элементов симметрии кристалла.
Стереографические проекции характеризуются двумя наиболее важными свойствами:
- любая окружность, проведенная на сфере, изображается на стереографической проекции также окружностью (в частном случае прямой линией);
- на стереографической проекции не искажаются угловые соотношения. Угол между полюсами граней на сфере (измеренный по дугам больших кругов) равен углу между стереографическими проекциями тех же дуг.
Рис.5.17 Принцип построения стереографической проекции
Рис. 5.18 Построение стереографической проекции a, b, d плоскости R
Рис.5.19 Стереографические проекции плоскостей, ориентированных: а – перпендикулярно плоскости проекции; б – в плоскости проекции; в – под косым углом к плоскости проекции.
В случае стереографической проекции оси симметрии проектируются подобно нормалям к граням. Вертикальные оси изображаются в центре круга проекций, а оси, наклонные к плоскости проекций, проектируются внутри круга проекций.
Рис.5.20 Стереографические проекции некоторых осей симметрии куба.
При проектировании плоскостей симметрии куба соблюдают следующие условия:
Вертикальная ось симметрии проектируется в виде прямой (двойной) линии, являющейся одним из диаметров круга проекций; горизонтальная плоскость, совпадает с плоскостью чертежа, представляется кругом проекций; проекция наклонной плоскости является дугой (рис. 5.21).
б
в
а
Рис.5.21. Некоторые плоскости симметрии куба и их стереографические проекции. а – плоскость симметрии расположена под углом к плоскости проекции; б- горизонтальная плоскость симметрии; в – вертикальная плоскость симметрии.