- •Основы кристаллографии и дефекты кристаллического строения
- •Лекция 1. Основные понятия о кристаллах План лекции
- •1.1. Закон постоянства гранных углов
- •Контрольные вопросы
- •Лекция 2. Структура кристаллов и пространственная
- •План лекции
- •2.1. Элементарная ячейка, её выбор, метрика
- •2.2. Кристаллическая структура
- •2.3. Кристаллографические символы узлов, плоскостей и направлений в кристаллах кубической сингонии
- •2.4. Символы узлов
- •2.5. Символы рядов (ребер, направлений)
- •2.6. Символы плоскостей (граней)
- •Контрольные вопросы
- •3.2. Определение символа атомной плоскости по координатам трёх узлов пространственной решётки
- •3.4. Кристаллографическая символика в гексагональной сингонии
- •Контрольные вопросы
- •Лекция 4. Элементы симметрии конечных фигур План лекции
- •4.1. Понятие о симметрии
- •4.2. Элементы симметрии кристаллических многогранников
- •Обозначение элементов симметрии
- •4.3. Взаимодействие симметрических операций (элементов симметрии)
- •4.4. Осевая теорема Эйлера
- •4.5. Теоремы сложения элементов симметрии
- •4.6. Точечные группы симметрии
- •Контрольные вопросы
- •5.2. Правила кристаллографической установки кристаллов для различных сингоний.
- •5.3. Кристаллографические проекции
- •5.4. Сферическая проекция
- •5.5. Стереографическая проекция
- •5.6. Гномостереографическая проекция
- •Контрольные вопросы
- •План лекции
- •6.1. Классы симметрии
- •6.2. Виды симметрии кристаллов, обладающих единичных направлением
- •6.3. Элементы симметрии бесконечных фигур
- •6.4. Винтовые оси симметрии
- •6.5. Плоскость скользящего отражения
- •6.6 Решетки Бравэ
- •6.7. Условия выбора ячеек Бравэ
- •6.8 Характеристика решеток Бравэ
- •Тип ячейки Бравэ.
- •6.9. Трансляционная группа, базис ячейки
- •6.10. Пример Выбора элементарной ячейки Бравэ
- •Контрольные вопросы
- •Лекция 7. Задачи, решаемые кристаллохимией План лекции
- •7.1 Координационное число, координационный полиэдр, число формульных единиц
- •7. 2. Плотнейшие шаровые упаковки в кристаллах
- •7.3. Основные типы структур
- •7.4. Основные категории кристаллохимии
- •Контрольные вопросы
- •Лекция 8. Точечные дефекты План лекции
- •8.1. Понятие об идеальном и реальном кристалле
- •8.2. Классификация дефектов кристаллической решетки
- •8.3. Точечные дефекты
- •8.4. Искажение решетки вокруг точечных дефектов
- •8.5. Термодинамика точечных дефектов
- •8.6. Миграция точечных дефектов
- •8.6.1.Миграция вакансий
- •8.6.2. Миграция межузельных атомов
- •8.6.3.Миграция примесных атомов
- •Контрольные вопросы
- •Лекция 9. Основные типы дислокаций и их движение План лекции
- •9.2. Скольжение краевой дислокации
- •9.3.Переползание краевой дислокации
- •9.6. Смешанные дислокации и их движение
- •Контрольные вопросы
- •Лекция 10. Количественные характеристики дислокаций План лекции
- •10.2 Вектор Бюргерса
- •10.3. Плотность дислокаций
- •Контрольные вопросы
- •Лекция 11. Упругие свойства дислокаций План лекции
- •11.1. Энергия дислокации
- •11.2. Силы, действующие на дислокацию
- •11.3. Упругое взаимодействие параллельных краевых дислокаций
- •11.4. Упругое взаимодействие параллельных винтовых дислокации
- •Контрольные вопросы
- •Лекция 13. Пересечение дислокаций План лекции
- •13.1. Пересечение краевых дислокаций
- •13.2. Пересечение краевой и винтовой дислокаций
- •13.3. Пересечение винтовых дислокаций
- •13.4. Движение дислокации с порогами
- •13.5. Пересечение растянутых дислокаций
- •Контрольные вопросы
- •14.1.2 Атмосферы Снука
- •14.1.3. Атмосферы Сузуки
- •1.4.2. Взаимодействие дислокаций с вакансиями и межузельными атомами
- •Контрольные вопросы
- •Лекция 15. Образование дислокаций План лекции
- •15.1. Происхождение дислокаций
- •15.2. Размножение дислокаций при пластической деформации Источник Франка — Рида
- •Контрольные вопросы
- •Лекция 16. Границы зерен и субзерен План лекции
- •16.1.Границы кручения и наклона
- •16.2. Малоугловые границы
- •16.3. Высокоугловые границы
- •16.4. Специальные и произвольные границы
- •16.5. Зернограничные дислокации
- •План лекции
- •17.2. Торможение дислокаций при их взаимодействии с другими дислокациями и границами зерен
- •17.3. Торможение дислокаций дисперсными частицами
- •17.4. Выгибание дислокаций между дисперсными частицами
- •17.5. Локальное поперечное скольжение
- •17.6. Перерезание дислокациями дисперсных частиц
- •17.7.2. Торможение дислокаций в твердых растворах
5.3. Кристаллографические проекции
Согласно закону постоянства углов, характерными параметрами любого кристаллического вещества являются углы между гранями (между определенными сетками в структуре). Описание взаимного расположения граней кристалла, основанное на величине углов между ними, не даёт наглядной картины симметрии кристалла. И только графический способ описания расположения граней с помощью кристаллографических проекций позволяет выделить грани кристалла (а также направления), связанные элементами симметрии.
При аналитическом описании граней в кристалле важно фиксировать лишь наклон плоской грани относительно координатных осей, не обращая при этом внимания на размеры грани, ни на расстояния грани от начала координат, ни на форму грани.
Любую плоскость и любое направление можно мысленно переносить в кристаллографическом пространстве параллельно самим себе, в частности можно путем такого параллельного переноса заменить кристалл совокупностью плоскостей и прямых линий, проходящих через одну точку в пространстве. Такая совокупность плоскостей и прямых носит название прямого кристаллографического комплекса.
В кристаллографии чаще пользуются не углами между гранями, а углами между нормалями к граням, потому что именно эти углы определяют по гониометрическим измерениям и по рентгенограммам.
Зная узлы между нормалями к граням, можно мысленно заменить кристаллический многогранник его полярным комплексом или совокупностью полупрямых, перпендикулярных к граням кристалла и проходящих через одну точку О центра комплекса (рис. 5.14.).
|
|
а |
б |
Рис. 5.14. Ромбический додекаэдр: а - с нормалями; б - его полярный комплекс
5.4. Сферическая проекция
Опишем вокруг точки О сферу (рис.5.14). Пересечение нормалей к граням к граням кристалла с поверхностью сферы представляет собой сферическую проекцию нормалей граней кристалла. Полученные точки на сфере проекций называют полюсами граней. Каждой из точек сферической проекции соответствует одна из граней кристалла (рис. 5.15). Сферическую проекцию кристалла можно строить, не заменяя грани кристалла их нормалями. В этом случае все грани кристалла путем параллельного переноса перемещают в центр сферы проекции и строят следы пересечения этих граней со сферической проекцией. Каждая такая сферическая проекция представляет собой дугу большого круга.
Положение любой точки на поверхности сферы можно охарактеризовать двумя сферическими координатами: широтой и долготой. Широта (полярное расстояние) отсчитывается по любому направлению от нуля (северный полюс) до 180 (южный полюс), долгота – по экватору от меридиана, принятого за нулевой (рис. 5.16).
Между
индексами плоскостей (
)
и сферическими координатами и нормали
к этой плоскости существует строгая
математическая зависимость. Вид
зависимости отличен для разных сингоний
и расположений кристалла. Для кубической
сингонии при условии, что одна из
плоскостей куба (001) находится в плоскости
проекций:
,
,
Сферическая проекция кристалла наглядна, но практика показала, что её удобнее проектировать на плоскость. При этом пользуются стереографическими, гномостереографическими проекциями.
|
|
Рис. 5.15.Принцип построения сферической проекции.
|
Рис.5.16 Сферические координаты на поверхности сферы проекции
|
