
- •Процессам и Аппаратам
- •Возникновение и развитие науки о процессах и аппаратах. Классификация процессов пищевой технологии.
- •Барботажные массообменные аппараты с колпачковыми, клапанными и чешуйчатыми тарелками. Назначение, устройство, принцип действия и область применения.
- •Основные свойства пищевых продуктов, сырья, воды, пара и влажного воздуха. Физические и теплофизические параметры.
- •Виды отстойников и их схемы. Производительность отстойника. Назначение, устройство, принцип действия и область применения.
- •Законы сохранения массы и энергии. Законы равновесия системы. Принцип движущей силы и законы переноса массы и энергии.
- •Адсорберы с подвижным слоем адсорбента. Назначение, устройство и принцип действия.
- •Современные методы исследования процессов и аппаратов. Понятие о подобии.
- •Оборудование для мокрой очистки газов. Схемы. Назначение, устройство, принцип действия и область применения.
- •Три теоремы подобия. Пи - теорема.
- •Мешалки. Назначение, устройство, принцип действия и область применения.
- •Установление вида критериев, входящих в уравнение подобия. Примеры.
- •Классификация теплообменников. Кожухотрубный теплообменник. Назначение, устройство и область применения.
- •Классификация неоднородных систем. Методы разделения неоднородных систем.
- •Конвективные сушилки: туннельные и ленточные. Назначение, устройство и принцип действия.
- •Кинематика отстаивания. Формула Стокса. Влияние формы частиц и их концентрации на процесс отстаивания.
- •Кондуктивные сушилки. Назначение, устройство и принцип действия.
- •Фильтрование. Виды фильтрования.
- •Теплообменники смешения. Назначение, устройство и область применения.
- •Теория фильтрования с образованием осадка.
- •Барабанные сушилки. Назначение, устройство и принцип действия.
- •Кристаллизаторы. Назначение, устройство и принцип действия.
- •Перемешивание. Способы перемешивания в жидкой среде.
- •Адсорберы с псевдоожиженным слоем адсорбента. Назначение, устройство и принцип действия.
- •Расчет расхода энергии при механическом перемешивании.
- •Гидроциклоны и аэроциклоны. Назначение, устройство, принцип действия и область применения.
- •Фильтры для неоднородных газовых систем. Схемы. Назначение, устройство, принцип действия и область применения.
- •Процессы нагревания и охлаждения. Теплопроводность, теплоотдача, теплопередача.
- •Электроосаждение и конструкция электрофильтра. Назначение, устройство, принцип действия и область применения.
- •Выпаривание и область его применения. Изменение свойств раствора при сгущении.
- •Способы выпаривания.
- •Сепараторы. Классификация и схемы. Назначение, устройство, область применения и принцип действия. Производительность сепаратора.
Кинематика отстаивания. Формула Стокса. Влияние формы частиц и их концентрации на процесс отстаивания.
Отстаивание — это частный случай разделения неоднородных жидких или газообразных систем в результате выделения твердых или жидких частиц под действием гравитационной силы. Применяют отстаивание при грубом разделении суспензий, эмульсий и пылей. Этот способ разделения характеризуется низкой скоростью процесса. Отстаиванием не удается полностью разделить неоднородную смесь на дисперсную и дисперсионную фазы. Однако простое аппаратурное оформление процесса и низкие энергетические затраты определили широкое применение этого метода разделения в пищевой и смежных отраслях промышленности.
Отстаивание проводят в аппаратах различных конструкций, называемых отстойниками.
При отстаивании должны соблюдаться следующие условия: продолжительность пребывания разделяемого потока в аппарате должна быть равна или больше времени осаждения частиц; линейная скорость потока должна быть меньше скорости осаждения. При Эффективность работы отстойника может быть увеличена посредством уменьшения пути отстаивания частиц, т. е. высоты слоя жидкости h. Это условие реализовано в многоярусных отстойниках.
Во вращающемся потоке на взвешенную частицу действует центробежная сила, под действием которой частица движется от центра к стенке аппарата со скоростью, равной скорости осаждения. Центробежная сила
При ламинарном движении скорость центробежного осаждения частицы определяется из уравнения Стокса:
1ОЦ
Продолжительность осаждения т найдем из выражения
Подставив уц из (7.6) в (7.7) и проведя интегрирование,-получим уравнение для определения продолжительности осаждения частиц под действием центробежной силы при ламинарном движении
Процесс разделения суспензий в отстойных центрифугах складывается из стадий осаждения твердых частиц на стенках барабана и уплотнения осадка.
Производительность осадительных центрифуг на практике ниже, чем полученная расчетным путем, так как, во-первых, производительность центрифуг снижается из-за отставания скорости вращения частиц жидкости от скорости вращения ротора центрифуги; во-вторых, из-за неравномерного течения жидкости вдоль ротора осадившиеся частицы смываются с его стенок; в-третьих, образующиеся вихревые потоки взмучивают частицы.
четной
Коэффициент эффективности для каждой конкретной конструкции центрифуг определяется опытным путем.
Кондуктивные сушилки. Назначение, устройство и принцип действия.
Сушилки, применяемые в пищевой промышленности, отличаются разнообразием конструкций и подразделяются по способу подвода теплоты (конвективные, контактные и др.); по виду используемого теплоносителя (воздух, газ, пар, топочные газы); по величине давления в сушилке (атмосферные и вакуумные); по способу организации процесса (периодического или непрерывного действия); по схеме взаимодействия потоков (прямоточные, противо-точные, перекрестного и смешанного тока).
Конвективные сушилки, среди которых простейшими являются камерные (рис. 22.13), представляют собой корпус, внутри которого находятся вагонетки. На полках вагонеток помещается влажный материал. Теплоноситель нагнетается в сушилку вентилятором, нагревается в калорифере и проходит над поверхностью высушиваемого материала или пронизывает слой материала снизу вверх. Часть отработанного воздуха смешивается со свежим воздухом. Эти сушилки периодического действия работают при атмосферном давлении. Их применяют в малотоннажных производствах для сушки материалов при невысоких температурах в мягких условиях. Камерные сушилки имеют низкую производительность и отличаются неравномерностью сушки продукта.
Центрифугирование. Расчёт производительности сегорагора (формула проф. Бремера).
Выпарной аппарат с естественной циркуляцией. Назначение устройство и принцип действия.
Выпарные аппараты с естественной циркуляцией просты по конструкции и применяются для выпаривания растворов невысокой вязкости, не склонных к кристаллизации. Эти аппараты бывают с соосной и вынесенной греющими камерами (рис. 15.8, а, б).
Выпарной аппарат состоит из сепаратора, греющей камеры и циркуляционной трубы. Сепаратор представляет собой цилиндрическую емкость с эллиптической крышкой, присоединенную с помощью болтов к греющей камере. В сепараторе для отделения капелек жидкости от вторичного пара устанавливают отбойники различной конструкции. Греющая камера выполнена в виде вертикального кожухотрубного теплообменника, в межтрубное пространство которого поступает греющий пар, а в греющих трубках кипит раствор. Нижние части сепаратора и греющей камеры соединены циркуляционной трубой.
Естественная циркуляция возникает в замкнутой системе, состоящей из необогреваемой циркуляционной трубы и кипятильных
труб. Если жидкость в трубах нагрета до кипения, то в результате выпаривания части жидкости в этих трубах образуется парожидкостная смесь, плотность которой меньше плотности самой жидкости. Таким образом, масса столба жидкости в циркуляционной трубе больше, чем в кипятильных трубах, вследствие чего происходит циркуляция кипящей жидкости по пути кипятильные трубы — паровое пространство — циркуляционная труба — трубы и т. д. При циркуляции повышается коэффициент теплоотдачи со стороны кипящей жидкости и снижается образование накипи на поверхности труб.
Для естественной циркуляции требуются два условия: 1) достаточная высота уровня жидкости в циркуляционной трубе, чтобы уравновесить столб парожидкостной смеси и создать необходимую скорость; 2) достаточная интенсивность парообразования в кипятильных трубах, чтобы парожидкостная смесь имела возможно малую плотность.
Представленные на рис. 15 8 аппараты выгодно отличаются от устаревших конструкций аппаратов с центральной циркуляционной трубой Наличие обогреваемой центральной циркуляционной трубы приводило к снижению интенсивности циркуляции.
Парообразование в кипятильных трубах определяется физическими свойствами раствора (главным образом вязкостью) и разностью температур между стенкой трубы и жидкостью. Чем ниже вязкость раствора и чем больше разность температур, тем интенсивнее парообразование и больше скорость циркуляции. Для создания интенсивной циркуляции разность температур между греющим паром и раствором должна быть не ниже 10 °С.
Выпарные аппараты, показанные на рис. 15.8, имеют площадь поверхности теплопередачи от 10 до 1200 м^, длину кипятильных труб от 3 до 9 м в зависимости от их диаметра. Диаметр кипятильных труб составляет 25, 38 и 57 мм. Избыточное давление в греющей камере 0,3...1,6 МПа, а в сепараторе вакуум примерно 93,0 кПа. Соотношение площадей сечения циркуляционной трубы и греющей камеры составляет не менее 0,3.
Выпарные аппараты с естественной циркуляцией характеризуются простотой конструкции и легкодоступны для ремонта и очистки.