Краткое справочное пособие по школьному курсу математики Определения; Теоремы; Свойства; Формулы; Алгоритмы
.pdfsmc 221 }I 72 M 79
YJlK 372.851(075.3)
AoTOp: A. r. MOP.llKOBH'I,.llOKT. nen. nayx, nporp.
M 79 |
MOP.llKOBH'IA.r. |
|
|
|
|
|
|
Kparxoe cnpaso-nroe rrocooae lIO lllKOJIbHOMY xypcy MaTeMaTHI<H: Orrpezte- |
|
|
|
||||
JIeHIDl; Teopexsr; CBOHCTBa; cI>0PMYJIbl; AnroPHTMbI. - |
M.: HOBaH urxona, 1994. |
:~ |
|
||||
|
f~ |
||||||
- |
48 C.-- ISBN 5-7301-0056-6 |
|
|
|
|
||
|
3a.ll)'MbiBaJI3TOcnpasosuoe noc06He, aBTOp CTaBHlI nepea co6oH clIenylOlUHe 3a,lla'lH: |
|
|
|
|||
|
|
|
|
||||
|
1. B lIaKOHH'IHOA4'opMe,!laTh '!maTeJJlOBee OCHOBHble onpezteaenaa, reopexse, «f!OPMYlIbI, |
|
|
|
|||
npaauna, CBoliCTBa MaTeMaTH'IecKHx06"eKToB, xoropsre acrpesascrca B llIKOllbHOM Kypce |
|
|
|
||||
MaTeMaTHKH. |
|
|
|
|
|
|
|
|
2. PaCnOllOlK!ITb MaTepHall TaK, |
'IT06h\ nOHCK HylKHOli |
'1HTaTeJJlO HH<fIoPMaJ.(HH 6b1J1 |
|
|
|
|
nOCTaTO'lHOnpocr. |
|
|
|
|
|
|
|
|
HacKollbKO y,!laJlOCb peunrrs 3TH 3a,lla'lH,cY.lUfTb BaM, '!maTeJIlIM.Mbi aaaeexca, 'ITO3Ta |
|
|
|
|||
He60Jlblllall KHHlKHUa craaer Ba1lIHM Ha,nelKHblM nOMOI1lHHKOM: B nepaozt 06Y'leHHlIB uncone H |
|
|
|
||||
noziroroaxn K BcrynmeJJbHbIM 3K3aMeHaM B By3, |
npa "OBTOpeHHH llIKOllbHOro xypca xareaa- |
|
|
|
|||
THKH, a TaKlKe BO MHOruX ztpyrax CJJY'IalIX. |
|
|
|
|
|
||
|
|
|
|
IiIiK 221 JI 72 |
|
|
|
|
AJIeKCaHAP Iparopsesax MOPAKOBH1J |
|
|
|
|
||
|
Kparxoe cnpaaoxnoe nocoriae lIO llIKOJIbHOMYKypcy MaTeMaTHKH: Onpeaeneaas; |
|
|
|
|||
Teopexsr: CBOHCTBa; cI>opMyJIbl; AnrOPHTMhI |
|
|
|
|
|||
|
XYllOX<HHK 06JIO:>KKH B.A: Bopxonor |
|
|
|
|
|
|
|
Penaxrop E.E.EJlHHKHHa |
|
|
|
|
|
|
|
KOMllbIOTepHaH BepCTKa C.B.CyxapeB |
|
|
|
|
|
|
|
Koppexrop A. E. YIBaHoBa |
|
|
|
|
|
|
|
JIHl{eH3Hl1 JIP lW061967 OT 28.12.92 |
|
|
|
|
|
|
|
C,naHO B Ha60p 5.05.94. Iloan. K nenara 27.05.94 |
|
|
|
|
||
|
|
|
|
|
|||
|
<I>0PMaT 60x90 1/16 oyMara raseraas. Ileears 04JceTHalI. |
|
|
|
|
||
|
Fapmrrypa ..Ilerepeypr. YClI. nes. JI. 3 |
|
|
|
|
|
|
|
THpaJK 50000 3K3. 3aKa3 NO 356. |
Ilena noroaopaas. |
|
|
f |
||
|
Hanarenscrso "HOBalI uncoaa". 107258, MOCKBa, |
|
|
||||
|
Kpacaooorarsipcxaa, 75, xopn.z |
|
|
|
..~ |
|
|
|
|
|
|
,'1] |
|||
|
MOCKOBCKU mnOrp8lPHSI NO 6 KOMHTeT8 p~ no neq8TH, |
|
|||||
|
|
|
I: |
|
|||
|
109088, MOCKB8, JK-88, IOlICHonopToB8S1 yn., 24. |
|
|
|
|||
|
|
|
|
|
|||
|
ISBN 5-7301-0056-6 |
|
|
|
|
|
|
|
|
© |
MopnKOBWI, 1994 |
)~-. |
|||
|
|
|
|
|
|||
|
|
|
|
|
,-i |
OrJIaBJIeHHe
AJIfEBPA |
. |
6 |
||
1. TO:>KneCTBeHHble npe06pa30BaHlHI . . . . . |
6 |
|||
|
1.1. <DopM}'JIbI pa3JIO:>KeHH.lI na MHO:>KHTeJlH |
6 |
||
|
1.2. MOnYJIb 'IHCJla |
. |
6 |
|
|
1.3. Kopens n-o CTeneHH . |
. • . . . . . |
7 |
|
|
1.4. Creneas C paUHOHaJlbHbIM noaaaarenesr |
7 |
||
|
1.5. JIorapHlpMbI. . . . |
|
8 |
|
2. <DyHKUHH . . . . . . . . . . . . |
9 |
|||
|
2.1. JIHHeuHa.lI epyHKUH.lI . . . . . |
9 |
||
|
2.2. 06paTHa.lI lIponOpUHOHaJIbHOCTb |
9 |
||
|
2.3. |
Kaanparaaaaa epyHKUH.lI |
|
10 |
|
2.4. <DyHKUH.lI Y = "-.IX . . . . . . |
10 |
||
|
2.5. Crenennaa epyHKUH.lI y =x r . . |
10 |
||
|
2.6. Iloxaaarensnaa H norapadisoorecsaa epyHKUHH |
12 |
||
|
2.7. CBOOCTBa epyHKUHH |
. |
12 |
|
|
2.8. IIoCTpoeHHe rpadmxos epyHKUHit C lIOMOlI.{bIO |
|
||
|
|
npeoopaaosaaajt H3BeCTHblX rparpaxoa. |
13 |
|
3. |
YpaBHeHH.lI . . . . . . . . . . . . . . . . |
14 |
||
|
3.1. Kaaaparuste ypaBHeHH.lI |
. '.. . . . . . . |
14 |
|
|
3.2 AJlroPHTM peurenas ypamreuas 3-0 crenenn |
15 |
||
|
3.3 |
I1ppaUHOHaJIbHble ypamrenas |
15 |
|
|
3.4. Iloxasarem.nue ypasnenaa |
15 |
||
|
3.5. Jloraparpxasecxae ypasuenas |
15 |
||
4. |
HepaBeHCTBa • ........ |
16 |
||
|
4.1. |
CBOOCTBa 'lHCJIOBbIX HepaBeHCTB |
16 |
|
|
4.2 |
HepaBeHCTBa C MOnYJI.llMH |
16 |
|
|
4.3. I1ppaUHOHaJIbHble HepaBeHCTBa |
16 |
||
|
4.4. Iloxaaarensnue HepaBeHCTBa |
17 |
||
|
4.5. JIorapHepMH'IecKHeHepaBeHCTBa |
17 |
||
5. |
Ilporpeccaa . . . . . . . . . . |
17 |
||
|
5.1. Aparpsreravecxaa nporpeccas |
17 |
||
|
5.2. Feosrerpa-recxaa nporpeccas . |
18 |
||
TPl1fOHOMETPI151 . . . . . . |
19 |
|||
1. TpHroHOMeTpH'leCKHeepyHKUHH. . |
19 |
|||
|
1.1. lJHCJIOBa.lI OKpy:>KHOCTb . . . |
19 |
||
|
1.2. TpHroHOMeTpH'leCKHeepyHKUHH |
20 |
||
|
1.3. Oriparnsre TpHrOHOMeTpH'leCKHeepyHKUHH |
21 |
||
|
1.4. |
fpaepHKH TpHrOHOMeTpH'leCKHXepyHKUHO |
23 |
|
|
1.5. fpaepHKH 06paTHbIX TpHroHoMeTpH'leCKHXepyHKUHO |
24 |
||
|
|
|
|
3 |
2. |
<1>OpMyJIbI TpnrOHOMeTpHH . . . . . . . |
|
25 |
|
|
2.1. <1>opMYJIbI, CBR3bIBaIOIUHe epYHKIJ;HH |
|
|
|
|
oznroro H roro )Ke apryxeirra |
|
25 |
|
|
2.2. <1>OPMYJIbI, CBR3bIBaIOIUHe epYHKIJ;HH apryxeirron, |
|
||
|
H3 KOTOPblX OllHH BllBoe 60JIblIIe llPyroro . . . |
25 |
||
|
2.3. <1>OPMYJIbI CJIO)KeHHR apryxenroe |
. |
25 |
|
|
2.4. <1>OPMYJIbI npeoopaaosanaa CYMM B npoaasezienaa |
26 |
||
|
2.5. <1>OPMYJIbI npe06pa30BaHH.sI nponaseztenaa B CYMMbI |
26 |
||
|
2.6. <1>OPMYJIbI npHBelleHHR . . . . . . |
. . . . • . . |
26 |
|
|
2.7. II pocreaurae TpHroHOMeTpH'IeCKHeypasuenaa . . . |
27 |
||
3JIEMEHTbi )l11<1><1>EPEHUI1AJIbHOfO I1Cl.J:I1CJIEHI151 |
28 |
|||
1. |
II POH3BOllHa.sI . . . . . . . . . . |
|
28 |
|
|
1.1. Onpenenenae rrpoaaeozmof . . |
|
28 |
|
|
1.2. <1>OPMYJIbI llHepepepeHIJ;HpOBaHH.sI |
|
28 |
|
|
1.3. Ilpasana llHepepepeHIJ;HpOBaHH.sI |
|
29 |
|
|
1.4. Feoxerpa-recaaa CMblCJI IiPOH3BOllHOii |
|
29 |
|
|
1.5. YpaBHeHHe xacarensnoa ... . . |
|
29 |
|
2. |
I1cCJIellOBaHHe epyHKIJ;HIt C nOMOIUbIO rrpouasozmof |
30 |
||
|
2.1. I1cCJIellOBaHHe Ha MOHOTOHHOCTb . . . . . . |
30 |
||
|
2.2. I1cCJIellOBaHHe Ha 3KcTpeMyM . . . . . . . |
30 |
||
|
2.3. Orucxanae naaoom.urero H naaxensnrero 3Ha'leHHH |
|
||
|
uenpepsrsnoa epYHKIJ;HH Ha npOMe)KyTKe. . . . |
31 |
||
3JIEMEHTbll1HTEfPAJIbHOfO I1Cl.J:I1CJIEHI151 |
32 |
|||
1. Ilepnooopasnas |
|
. |
32 |
|
|
1.1. Onpeaenenae nepaooopasnoa . . . . . . . |
32 |
||
|
1.2. Ilpaaana BbI'IHCJIeHH.sIrrepnooopasnoa |
|
32 |
|
|
1.3. <1>OPMYJIbI BbI'IHCJIeHH.sInepaooopasnoa F (x) |
|
||
|
llJIR epYHKIJ;HH f (x) |
|
. |
32 |
2. Heonpenenennstf HHTerpaJI . . . . . . |
• . . |
33 |
||
|
2.1. Orrpenenenae neonpenenennoro anrerpana |
33 |
||
|
2.2. Ilpasana HHTerpHpOBaHH.sI . |
|
33 |
|
|
2.3. <1>OpMyJIbI HHTerpHpOBaHHR . |
|
33 |
|
3. Orrpeztenennua HHTerpaJI |
. . • . |
|
34 |
|
|
3.1. <1>opMYJIa HbIOToHa-JIeH6HHIJ;a |
|
34 |
|
|
3.2. CBoii:CTBa onpenenennoro mrrerpana |
|
34 |
|
|
3.3. BbI'IHCJIeHHenJIOIUaneIt nJIOCKHX epHryp |
|
||
|
C nOMoIUbIO anrerpana |
|
35 |
|
llJIAHI1METPI151 . |
|
|
36 |
|
1. TpeyrOJIbHHKH . . . . |
• . |
|
36 |
|
|
1.1. 0603Ha'leHH.sI . . . . |
|
36 |
|
|
1.2. Paanocroponnaa rpeyronsnax |
|
36 |
|
|
1.3. llP.sIMOyrOJIbHbIii: TpeyrOJIbHHK (C = 90") |
36 |
||
|
1.4. llPOH3BOJIbHbIii: TpeyroJIbHHK . . . . . |
37 |
4
it,
III
:11
2.l.J:eTblpexyrOJIbHHKH . . . . . . .
2.1.BbmYKJIblii '1eTblpexyrOJIbHHK
2.2.llapaJIJIeJIOrpaMM
2.3.Tpanenaa . . . . . . . .
3. OKPY)KHOCTb H Kpyr . . . . .
3.1.)lBa CBOUCTBa KaCaTeJIbHbIX
3.2.113MepeHHe yrJIOB, CB.sI3aHHblX C oKpy)KHOCTbIO
3.3.MeTpH'IeCKHeCOOTHOllIeHH.sI B oKpy)KHOCTH
3.4.)lJIHHa oKpy)KHOCTH, nJIOIUanb xpyra
3.5.)lJIHHa llyrH, nnontans cexropa
CTEPEOMETPI151 . . . . . • . . . . .
1.OCHoBHbIe TeopeMbl, HCnOJIb3yeMbie llJI.sI 06ocHOBaHH.sI '1epTe)Ka
2.Ilapaxana . . . . . . . . . . . . .
2.1.OCHoBHbIe KOMnOHeHTbl nHpaMHllbl . . . . . . . . . .
2.2. |
l.J:eTbIpe CJIY'la.sIBbICOTbI nHpaMHllbI . . . . . . . . . . |
2.3. |
Bbl'lHCJIeHHe06'beMaH nJIOIUallH rroaepxaocra napaxansr |
3. Ilpaaxa |
. |
3.1. OnpelleJIeHH.sI |
. • . . . . . . . . . . . . |
3.2.BbI'IHCJIeHHe06'beMaH nJIOIUallH nosepxnocra np.sIMoii: npH3MbI
4.Kpyrnsre TeJIa
4.1.UHJIHHllP . . .
4.2.KOHyC ....
4.3.Y ce'leHHbliiKOHyC
4.4. lllap |
. |
5.Onacannsre urapu
5.1.Illap H napaxaaa
5.2.lllap H npaaxa
5.3.lllap H IJ;HJIHHllP .
5.4.lllap H KOHyC . .
5.5.lllap H yce'leHHblii:KOHyC
6. Bnacannue llIapbI . . . .
6.1.Illap H napaxana
6.2.lllap a npnxax npaaxa
6.3.lllap H IJ;HJIHHllP . . .
6.4.lllap H KOHyC . . . .
6.5.lllap H yce'leHHblHKOHyC
38
38
39
39
39
39
40
40
40
41
41
41
42
42
42
42
43
43
43
44
44
44
45
45
46
46
46
46
47
47
47
47
47
48
48
48
5
AJIfEBPA
1.Toseztecmeaesre npeotipaaonanaa
1.1.C1l0PMyJlhl p33JlOXCeHHJI aa MHOXCHTeJIH
a2 - b2 =(a - b) (a + b). |
|
|
|
|||
a3 - b3 =(a - b) (a2 + ab + b2). |
|
|
||||
a3 + b3 = (a + b) (a2 - ab + b2). |
|
|
||||
a2 ± 2ab + b2 = (a ± b)2. |
|
|
|
|||
a3 + 3~b + 3ab2 + b3 = (a + b)3. |
|
|
||||
a3 - |
3a2b + 3ab2 - b3 = (a _ b)3. |
|
|
|||
ax' + bx + C =a (x - Xt) (x - x 2 ) , |
|
|
||||
r lie X t ' |
X 2 - |
KOpHH xsaztparnoro TpeXtIJIeHa a~ + bx + c. |
||||
p(x) = (x - |
Xt) q(x), rzte X t |
--- xopens MHOrOtIJIeHa p(x). |
||||
|
|
|
1.2. MOA)'Jlb'lHcJla |
|||
|
|
|
1.2.1. |
Onpeoenenue |
|
|
I a I={ |
a, eCJUI a ~ 0; |
|
|
|
||
|
|
- a, eCJIH a < O. |
|
|
|
|
|
|
|
1.2.2. Ceoiicmea |
|
||
Ia I~ O. |
|
|
2n |
=a |
2n |
|
|
|
Ia 1 |
, n EN. |
|||
Iab 19 a I. I b I. |
Ia + b Is Ia I+ I b I. |
|||||
a I |
Ia I |
|
|
|
|
|
Ii |
=m' |
|
|
|
|
6
']
1
',;:1
i
1.3.Kopeas n-it crenena
1.3.1.Onpedenenus
ECJIH a ~ 0, TO KopHeM n-u cmenenu (n = 2,3,4 ... ) U3 "IUCJUl a
Ha3bIBaeTCH raxoe neorpauarensnoe qHCJIO b, llJI5l xoroporo BbIllOJIH5leTCH paBeHCTBO b" = a:
n--Ja = b, a ~ 0 <=> b" = a, b ~ O.
ECJIH a < 0, a n ~. 3 -- nesernoe tIHCJIO, TO KopHeM n-u cmeneuu
U3 "IUCAa a nassmaercs raxoe OTpHuaTeJIbHOe tIHCJIO b, llJI5l xoroporo
BbIllOJIH5leTC5l paBeHCTBO bn = a.
n..J(i == b, rzre n -- HetIeTHOe tIHCJIO, a < 0 <=> bn = a, b < O.
1.3.2. Ilea OCHoeHblX moocoecmea
n-{dl = Ia I, eCJIH n |
---- -rernoe tIHCJIO; |
|
|
n-{dl =a, eCJIH n ---- |
HetIeTHOe tIHCJIO. |
|
|
|
1.3.3. |
Ceoiicmea (aM a > 0, b > 0) |
|
n--Ja n-{b = nWifi. |
n"kWi |
= nkWi. |
|
nWi |
= n« ~ |
n- rz: |
= nk: ,..-,;jk |
n..fb |
'J b. |
»a: |
»a: . |
t--Ja) k = W.
1.4.Creneas c pal.lHOHaJlbHblM noxasareaex
1.4.1.Onpeoenenus
at = a.
ECJIH n EN, n -:t 1, TO an = aa ". a (n COMHO)f(HTeJleH).
ECJIH a -:t 0, TO aD = 1.
ECJIH a ~ 0, TO ap1q =q-{;;P.
ECJIH a -:t 0 |
H |
n E N, |
TO a- n =~an. |
. |
|
t) |
1 |
ECJIH a > 0 |
H |
r = L.., |
TO a- T =-. |
|
|
q |
aT |
7
1.4.2. Ceoiicmea
a'la'2 =a'l + '2. |
a'b' =(ab)'. |
|||
a'2 |
|
_, |
. |
:: =(~J |
a'l |
|
|
|
|
-=U1 |
2 |
|
|
|
(a'l)'2 |
=a'l'2. |
1.5. JIorapu<l>MIII |
||
|
|
|
|
1.5.1. Onpedenenue
AozapufjJMoM nOJIO:>KHTeJIbHoro qHCJIa b no nOJIO:>KHTeJIbHOMY OCHOBaHHIO a :t 1 Ha3bIBaeTC~ nOKa3aTeJIb CTeneHH, B KOTOpyIO HY:>KHO B03BecTH a, qT06bI nOJIyqHTb b:
logab = C, b » 0, a > 0, a :t- 1 <;=> aC = b, a > 0, a :t- 1.
1.5.2. Ilea OCHoeHblX moscoecmea
a |
logab |
b: |
logaa'= r. |
|
- , |
||
|
|
1.5.3. Ceoiicmea (l(TI~ b > 0, C > 0) |
|
logabc =logab + logac, |
logcb |
||
logab = -1- . |
|||
|
|
|
ogca |
|
b |
=lo&b - logac. |
logab = log,{b'(r -:t; 0). |
loga~ |
|||
|
c |
|
|
logab'= rlo&b. |
|
||
|
1.5.4. Ceoiicmea (,llJI~ |
rrpOH3BOJIbHbIX b, c ozmoro 3HaKa) |
|
logabc =logal b I+ logal c I. |
|||
|
b |
= logal b I- logal C I. |
|
log,-c |
10gab2n = 2n logal b I (n EN).
1.5.5. j(eCRmUItHbIU AozapurjJM
10gtOb = 19 b (06IUerrpHH~TM sanacs).
1.5.6. Hamypansnuii AozapurPM
logeb = In b (06IUerrpHH~TM sanncs).
e = 2,7182818284590 ... ; 06blqHO CqHTaIOT, qTO e "" 2,7.
8
]
l
,)
?r
,t'~
|
|
2 ° <1lyHKU,UU |
|
|
|
||
|
2.1. JIuHdlHaJi <l>YHKlJ,Ha |
|
|
|
|||
fpaq.HIKOM JIHHeHHOH |
<PYHKl{HH |
Y = kx + b |
51BJI5IeTGI |
npastaa. |
|||
k = tga. ---- yrJIOBOH K03<P<PHUHeHT. |
|
|
|
|
|||
Yf |
|
|
y' |
|
Y |
|
|
|
|
|
|
|
|
|
|
|
y=kx+-b |
|
I |
|
|
|
|
|
. / |
~ |
|
y::.b b |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(;;-;;0) |
|
|
|
x |
|
|
......... x |
- |
|
x |
|
|
UI |
01 |
2.2. Otiparnas nponopnaoaansnocrs
k
fpa<pHKoM <pyHKUHH y =- S1BJISleTCSI ranepoona C aCHMIlTOTaMH x
x =0, y =0.
y |
|
|
|
!J |
|
|
~'>OJ |
~. |
O'0r- x |
||
|
|
|
|
|
|
\10 |
|
x |
|
||
|
|
|
|||
|
|
|
|
( y=f (k<O) |
|
|
|
|
|
|
|
s.A. MOPAKOBWI |
9 |
|
2.3. KB3,lJ,pamlJHaB <!»YHKIlHH
rpa<pHKoM KBall.paTHqHOH |
<pyHKUHH |
y = aXL + bx + C }lBJUlerOI |
||||||||
napario.na |
C BeTB}lMH, HanpaBJIeHHbIMH snepx, |
eCJIH a> 0, H |
BHH3, |
|||||||
|
|
. |
|
|
|
|
|
|
b |
|
eCJIH a < 0; OCbIO CHMMeTpH~1 napaoonsr CJIy)f(HT npaxas x =- |
-2. |
|||||||||
|
|
|
|
|
. |
|
|
|
|
a |
|
|
II |
|
|
y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
x |
|
|
|
|
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.4. <1>YHKIlIIH Y ="..jX |
|
|
|
|
|||
n - qeTHOe qHCJIO. |
|
n - |
HeqeTHOe qHCJIO. |
|
||||||
9 |
|
|
|
|
|
|
y |
|
|
|
|
|
|
|
|
|
|
|
|||
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
o |
|
|
x |
|
|
|
|
|
x |
|
|
|
|
2.5. CTeneHHaH <!»YHKllHH Y = xT |
|
||||||
y = x T ; |
r = 2n, n E |
N. |
y = x T ; |
r = 2n + 1, n E |
N. |
|||||
|
|
|
y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
|
|
|
0, |
x |
|
|
|
|
|
|
10
~Il.·'.·
,I
|
y = x'; |
r = O. |
|
|
|
|
|
y =x'; |
r =- 2n, n E N. |
||||||||||||
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
!I |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
1 |
|
|
|
|
|
|
~"-- |
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
o |
|
)( |
|
|
|
|
|
|
o |
|
x |
||||||
|
|
|
|
|
|
|
|
|
|
|
y =x'; |
r =E. > 1. |
|||||||||
y =x'; |
r =- (2n - 1), n E N. |
||||||||||||||||||||
|
|
|
|
|
|
.. |
|
|
|
|
|
|
|
|
q |
|
|
|
|
||
|
|
|
|
!I |
|
|
|
|
|
|
!I |
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
\ |
|
|
|
|
x |
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
o |
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
y =x'; |
r =2 |
0<E.<1. |
, |
r =- |
E. |
E. > O. |
|||||||||||||||
|
|
|
|
q' |
q |
y =x" |
q' |
q |
|||||||||||||
|
!J |
|
|
|
|
|
|
|
|
|
y |
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
o |
)( |
o |
x |
2: |
11 |
|
2.6. TIoKa3areJIbHaJI H JIOrapH~"IH'IeCKaJl <l>yHKIJ,HH
x |
y = if, 0 < a < 1. |
y=a,a>1. |
!J |
a |
LJ
x |
a |
x |
y = logax, a > 1. |
"I = Iogax, 0 < a < 1. |
v
y
o
a x
2.7. Caoncrsa <l>yHKIJ,Hit
2.7.1. Hemnocms
ePyHKUlUl y = (x) Ha3blBaCTC>I wemnou, CCJIli (-x) = (x) .llJI>I
.morioro x H3 06nacTH orrpeaenenns epyuKUHlI. Tparpax '1CTHOH<pyHKUHH CHMMCTpWICU OTHOCHTCJIbHO ocn u.
2.7.2. Hesemnocms
ePyIIKUH>I y = (x) Ha:JbIBaCTC>I He'temHou, eC1IH {(- .r) = - (x) .lln>l
JIIOUOrO x H3 orinacru onpC.llCJICHH>I q>YHKLlHH. rpaclnlK HC'fCTHOH epyuKUHH CHMMCTpH'fCnOTHOCHTcnbHO na {lana KOOPIlH nar.
12
2.7.3. IIepuoiJulfHocmb
ePyHKUU>I y =(x) Ha3bIBaeTC>I nepuoiJulfecICou, eCJIU cyuiecrsyer 'lUCJIOT :I: 0 raxoe, 'lTOpasencrno (x) =(x + n =(x - n BbInOJInaercs .llJI>I JII060ro x U3 06JIaCTU onpezrenenaa epyHKUuu; T -- nepuoo rPYHIC14UU.
2.7.4. Monomounocms
ePyHKUU>I y =(x) Ha3bIBaerC>I 803pacmtJrotqeu (y6tH8arotqeu) na
nponexcyrxe X, eCJIU .llJI>I JII06bIX Xl' x 2 U3 X TaKUX, 'lTOXl < x2 '
BbInOJIH>leTC>I aepaseacrno (Xt ) < (x 2) «((Xl) > (x2».
2.7. S. Oepanuxeunocms
ePyHKUU>I y = (x) Ha3bIBaerC>I ozpaHu'teHHou c8epxy na npoxe- »cyrxe X, eCJIU cymecrsyer raxoe 'lUCJIOM, 'lTO(x) $ M .llJI>I JII060ro x U3 X. Iparpa« TaKoH epyHKUuu pacnOJIO)KeH HH)Ke np>lMOH y = M. ePyHKUU>I Y = (x) Ha3bIBaeTC>I ozpaHu'teHHou CHU3Y na npoxe- )KyTKe X, eCJIU cymecrsyer raxoe 'lUCJIOm, 'lTO(x) ~ m .llJI>I JII060ro x U3 X. I'parpa«TaKoH epyHKUuu pacnOJIO)KeH ssnne np>lMOH y = m. ePyHKUU>I y =(x) Ha3bIBaeTC>I ozpaHu'teHHou na npovescyrxe X,
eCJIU OHa na 3TOM npoxeacyrxe orpanaseaa U csepxy U CHH3Y.
ECJIU epyHKUU>I Y = (x) nenpepsisna na orpeaxe [a,b], TO OHa na 3TOM OTpe3Ke orpanaxena.
2.8. Ilocrpoenae rpadnncoa <l>yHKIJ,HIi
c nossomsso npeo6pa30BaHHII naaecrasrx rpa<l>HKoB
nYCTb rpaepuK epyHKUHH y = (x) nocrpoea.
lITo6bI nOCTpOUTb rparpa« epyHKUuu y = (x + a) + b, Hy)KIW:
ocyurecrnars napaJIJIeJIbHbIH nepeaoc rparpaxa y = (x) na sexrop (- a,' b).
lIr06bI nOCTpOUTb rpadnnc epyHKUuu y = I(x) I, Hy)KHO: |
|
|
OCTaBUTb 6e3 U3MeHeHH>I BeTBU |
rparpaxa y = (x), |
xoropsre |
JIe)KaT nsrure ocu x; |
|
|
3aMeHUTb BeTBU rpadnrxa y = (x), |
xoropsre JIe)KaT HU)Ke OCH x, |
|
CUMMeTpU'lHbIMHUM OTHOCHTeJIbHO oca x. |
|
|
lITo6bI nOCTpOUTb rpadnnc epyHKUHU y = ( Ix I), Hy)KHO: |
||
OCTaBUTb 6e3 U3MeHeHU>I BeTBU |
rparpaxa y = {(x), |
xoropsre |
JIe)KaT npasee OCH y; |
|
|
|
|
13 |
OT6poCHfb BerBH rparpaxa Y =f(x), |
xoropsre JI~aT nesee OCH Y; |
.ll06aBHTb K OCTaBIIIHMOI BeTB}lM CHMMeTpH'IHbleHM OTHOCHTeJIb- |
|
HO OCH y. |
|
4T06bI nOCTpOHTb rparpax ¢>yHKUHH y= kf(x), Hy)l(HO: |
|
ocyutecrmrn, paCT}I)I(eHHe rpadnnca y = f(x) OT OCH x no BepTH- |
|
KaJIH B I k I paa (eCJIH Ik I< 1, |
TO ¢>aKTH'IeCKH nOJIY'IHTC}I |
C)I(aTHe?; ecJIH npa 3TOM k < 0, TO paCnlHYTbIH rpadmx Hy)l(HO 3aMeHHTb CHMMerpH'IHbIMesry OTHOCHTeJIbHO OCH x.
TI pH 3TOM npe06pa30BaHHH OCTaIOTC}I HenO.llBH)I(HbIMH TO'lKH nepecevenas rparpaxa y = f(x) C OCbIO X.
4T06bI nOCTpOHTb rpa¢>HK ¢>yHKUHH y = f(mx), Hy)l(HO: ocyutecrmrn- C)I(aTHe rpadnnca y = f(x) KOCH Y no ropH30HTaJIH
B I m I |
pa3, (eCJIH I m I<, 1, |
TO |
nOJIy'lHTC}I paCT}I)I(eHHe C |
|
K03¢>¢>HI.(HeHTOM |
I ~ I); eCJIH |
npH |
3TOM m < 0, . TO C)I(aTbIH |
|
rparpnx |
Hy)l(HO |
3aMeHHTb CHMMeTpH'lHbIM esry OTHOCHTeJIbHO |
||
OCH y. |
|
|
|
|
TIPH 3TOM npe06pa30BaHHH OCTaeTOI HenO.llBH)I(HOH TO'lKanepece-
'leHH}Irparpaxa y = f(x) y.
3. YpaBHeHuB
3.1. Kaaaparasre ypaaaenaa
|
3.1.1. (/JoPMYAbl xopneii xeaopamnoeo ypaenenun |
||||||
|
|
ax2 + bx + e = |
°(a *" 0) |
|
|
||
x t .2 = |
-b ± ...J b2 - 4ac |
HJIH x t .2 = |
-k ± {k1 - ac |
, eCJIH b = 2k. |
|||
|
2a |
|
a |
|
|||
4HCJIO b2 - |
4ae ---- .llHCKpHMHHaHT KBatlpaTHOro ypasneaaa (0603- |
||||||
Ha'laeTC516yKBOH D). |
|
|
|
|
|
||
|
|
3.1.2. Teopeua Buema u ee cneocmeus |
|||||
ECJIH xl'x 2 |
--- KOpHH xaazrparaoro ypaBHeHH51 x 2 + px + q = 0, TO: |
||||||
x t + X2 =- p, |
x~ + ~ =- P (p2 - 3q), |
||||||
Xt x 2 = q, |
|
|
4 |
4 |
22222 |
||
|
Xt |
+ x 2 = (p - q) - q. |
x~ + ~ = p2 - 2q,
14
3.2 AUOpHTM pemeuns ypasaeaaa 3-A crenena
ax3 + bx? + ex + d = 0, rzte a, b, c, d -- nensre 'lHCJIa;a ~ 0.
1. BbInHIIIHTe see .lleJIHI.eJIH cB060.llHOrO xneira d.
2. BbI6epHTe cpena 3THX .lleJIHTeJIeH TO 'lHCJIOxt 'xoropoe 5lBJI51erC51 xopnex ypaBHeHH51 (ecJIH raxoro 'lHCJIaHer, TO aJIrOpHTM nenproreHHM).
3. Pa3.lleJIHTe ax3 + bx 2 + ex + d na (x - xt ) , nOJIyqHTe B 'laCTHOM
u |
2 |
+ |
b |
tX + Ct· |
|
xaazrparnsta TpeX'lJIeHax |
|
|
|
||
4. Haiiztare KOpHH x 2' |
x 3 ypaBHeHH51 ax2 + btx + c t |
= 0. |
|||
5. 3anHIlIHTe OTBer: xl'X 2' |
x3 --- KOpHH ypaBHeHH51. |
||||
3.3 Hppauaoaaxsasre ypaaneaaa |
|
||||
ECJIH n --- nesernoe 'lHCJIO, TO ypasuenae n...jf(x) |
= q(x) pasno- |
||||
CHJIbHO ypaBHeHHIO f(x) = (q(x))n. |
|
ECJIH n --- sernoe 'lHCJIO,TO ypasneaae n...jf(x) = q(X) paBHOCHJIbHO CMeIlIaHHOH CHCTeMe:
f (X) ~ 0,'
q(X) ~ 0,
{f(x) = (q (x) )n.
3.4.TIoKa33reJlbHble ypaBHeHHSI
ECJIH a > 0, a*"1, TO ypasneaae c!(X) =aq(x) paBHOCHJIbHO ypaB-
HeHHIO f(x) = q(x).
3.5. JIorapH¢>MH'IeCKHeypaaaenaa
ECJIH a > 0, a*"1, TO ypasnenae logaf(x) = lo&q(x) paBHOCHJIbHO
CMeIlIaHHOH CHCTeMe:
f (X) > 0, q(x) > 0,
{ f(x) = q(x).
15
|
|
|
4. Hepaaeacrna |
|
|
4.4. IIOIC3aaTeJlbHble aepaaeacraa |
||||
4.1. CBoAcTBa 'IIICJlOBbIXuepaseacra |
|
|
ECJIH a > 1, TO HepaBeHCTBO d(X) > aq(x) paaHOCHJJbHO nepaseacrny |
|||||||
|
|
roro xce CMbICJIa f(x) > q(x). |
|
|||||||
|
|
|
|
|
|
|
|
|
||
ECJIH a> b, b » c, TO a> c. |
|
|
|
ECJIH 0 < a < 1, TO HepaaeHCTBO |
a!(X) > aq(x) paaHOCHJIbHO nepa- |
|||||
ECJIH a > b, TO a + c > b + c. |
|
|
|
BeHcTBy rrpOTHBOrrOJIO)KHOrO CMbICJIa f(x) < q(x). |
||||||
ECJIH a> b, c> d, TO a + c > b + d. |
|
|
4.5. Jlorapu<!mUlJeCKUe HepaBeHCTBa |
|||||||
ECJIH a> b, c |
< d, TO a - c > b - |
d. |
I~. |
|||||||
|
|
|||||||||
ECJIH a > b, m > |
0, |
TO am > bm. |
|
ECJIH a > 1, TO HepaBeHCTBO logaf(x) > 10&zq(x) paBHOCHJIbHO CHC- |
||||||
ECJIH a > b, m < 0, |
TO am < bm. |
|
rexe HepaBeHCTB: |
|
||||||
ECJIH a > b > |
0, |
c > |
d > |
0, TO ac > bd. |
|
|
f (X) > 0, |
|||
|
|
q(x) > 0, |
||||||||
|
|
|
1 |
1 |
|
|
|
|||
ECJIH a > b > |
|
|
|
|
|
\ f(x) > q(x). |
||||
0, |
TO a< b' |
|
|
|
||||||
ECJIH a > b ~ 0, TO an > b" |
|
|
|
ECJIH 0 < a < 1, TO HepaBeHCTBO 10&z f(x) > log, q(x) paaHOCHJIb- |
||||||
|
|
|
HO CHCTeMe nepaaencrs: |
|
||||||
ECJIH a :> b ~ 0, TO n...Ja |
~ n...fb. |
|
|
|
|
|||||
|
|
|
f (X) > 0, |
|||||||
|
|
|
|
|
|
|
|
|||
|
4.2 Hepaaencraa C MO.nYJlJlMH |
|
|
q(x) > 0, |
||||||
|
|
|
\ f(x) < q(x). |
|||||||
HepaaeHCTBO BHJla If(x) I> q(x) paaHOCHJIbHO cosoxynnocra JlBYX |
|
|
Hepaaeucrso BHJla 10&z(x/(x) > loga(x)q(x) paaHOCHJIbHO cosoxyn- |
|||||||
CHCTeM HepaBeHCTB: |
|
|
|
|
|
|
HOCTH CHCTeM HepaBeHCTB: |
|
||
|
f (X) ~ 0, |
|
f (X) S; 0, |
|
|
a(x ) > 1, |
0 <a(x) < 1, |
|||
|
{ f(x) > q(x) ; |
{ - f(x) > q(x) . |
|
|
q(x) > 0, |
f<x) > 0, |
||||
|
|
|
|
|
|
|
|
\ f(x) > q(x); |
\((x) < q(x). |
|
4.3. Hppanaoaansnsre uepaseacraa |
|
|
|
|
||||||
Hepaseacrso BHJla ...Jf(x) |
< q(x) paaHOCHJIbHO CHCTeMe nepaaencrs: |
|
|
5. Ilporpeccaa |
||||||
|
|
|
|
f (X) ~ 0, |
|
|
|
|
|
q(x) > 0,
{ f(x) ~ ( q(x) )2.
HepaaeHCTBO BHJla ...Jf(x) > q(x) paaHOCHJIbHO coaoxynaocra CHC-
TeM nepaaencrs:
f (X) ~ 0, |
f (X) ~ 0, |
|
q(x) ~ 0, |
||
{ q(x) < O. |
||
{ f(x) > ( q(x) )2; |
||
|
5.1. Apu<!memlJeCKaH nporpeccas
5.1.1. Onpeoenenue
ApurjJMemUileCKOil npoepeccueii Ha3bIBaeTC~ rrOCJJeJlOBaTeJJbHOCTb a1,
a2 , ... , an' ... , Ka)KJlbIH 'IJIeHKOTOpOH, KpOMe nepsoro, OTJIH'IaerC5I OT npezrsmyurero na OJlHO H TO )Ke 'IHCJIOd:
an + 1 =an + d; d -- pa3HOCTb nporpeccna.
16 |
y. A. MOPI'lKOBH'1 |
17 |
|