
- •Раздел I. Механика. Молекулярная физика. Термодинамика 16 глава 1. Законы динамики ньютона. Законы сохранения 16
- •Вопросы и задачи к главе I. 33 глава 2. Молекулярно-кинетическая теория газов
- •Глава 3. Применение первого начала термодинамики к процессам в идеальном газе 52
- •Глава 4. Реальные газы 74
- •Вопросы и задачи и вопросы к главе 4. 82 глава 5. Поверхностное натяжение жидкости 82
- •Вопросы и задачи к главе 5 102
- •Глава 6. Вязкость жидкости 103
- •Вопросы и задачи к главе 6 116
- •Глава 7. Твёрдые и жидкие кристаллы. Стеклообразное состояние вещества. Полимеры 117
- •Глава 8. Процессы переноса 127
- •Раздел II колебания и волны 135
- •Глава 1. Механические колебания 135
- •Вопросы и задачи к главе 1. 153
- •Глава 2. Механические волны 153
- •Вопросы задачи к главе 2. 158
- •Глава 3. Звук 159
- •Вопросы и задачи к главе 3. 167
- •Глава 4. Ультразвук. Его применение в медицине. Инфразвук
- •Вопросы задачи к главе 4 180
- •Глава 5. Электромагнитные колебания и волны 181
- •Вопросы задачи к главе 5 201 глава 6. Оптика 201
- •Вопросы задачи к главе 6 251
- •Раздел III. Атомная, ядерная и квантовая физика
- •Глава 1. Тепловое излучение тел 253
- •Глава 2. Рентгеновское излучение 261
- •Глава 3. Радиоактивность 272
- •Глава 4. Дозиметрия ионизирующих излучений 282
- •Раздел IV. Биофизика 337 глава1 молекулярная биофизика 337
- •Глава 2. Биологические мембраны. 358
- •Глава 3. Термодинамика биологических систем 386
- •Глава 4. Транспорт веществ через биологические мембраны
- •Глава 5. Биопотенциалы 416
- •Глава 6. Биофизика нервного импульса 427
- •Глава 7. Моделирование биологических процессов 446
- •Введение
- •Раздел I механика. Молекулярная физика. Термодинамика.
- •Глава 1 законы динамики ньютона. Законы сохранения.
- •1.1. Законы ньютона. Основные дифференциальные уравнения движения.
- •Здесь аx , аy , аz - проекции вектора ускорения на оси координат X , y и z;
- •1. 2. Законы сохранения импульса и энергии
- •. Задача о центральном ударе шаров: абсолютно упругом и абсолютно неупругом.
- •1.4 Физические основы центрифугирования
- •Глава 2. Молекулярно-кинетическая теория газов
- •2.1 Отличия молекулярной структуры газов, жидкостей и твёрдых тел. Характер молекулярного движения в различных состояниях вещества. Аморфные и кристаллические жидкости и твёрдые тела
- •Примечание 2
- •2.2 Основное уравнение молекулярно-кинетической теории газов. Средняя квадратическая скорость молекул газа.
- •2.3 Средняя кинетическая энергия поступательного движения молекул газа. Распределение энергии по степеням свободы. Внутренняя энергия идеального газа
- •2.4 Распределение Максвелла молекул идеального газа по абсолютным значениям их скоростей.
- •2.5 Распределение Больцмана по потенциальным энергиям молекул идеального газа. Барометрическая формула Больцмана.
- •Глава 3. Применение первого начала термодинамики к процессам в идеальном газе.
- •3.1. Особенности термодинамического метода. Первое начало термодинамики.
- •3.2. Применение первого начала термодинамики к равновесным изопроцессам идеального газа
- •Работа газа при его расширении
- •Теплоёмкость
- •Политропные процессы - процессы с постоянной теплоёмкостью.
- •Глава 4. Реальные газы
- •4.1.Уравнение состояния реального газа Ван - дер - Ваальса и изотермы Ван- дер - Ваальса.
- •4.2. Изотермы Эндрюса
- •Сжижение газов. Получение низких температур.
- •Глава 5. Поверхностное натяжение жидкости
- •5.3 Поверхностные явления на границе твёрдой, жидкой и газообразной фазы. Краевой угол смачивания. Смачивание и несмачивание твёрдой поверхности жидкостью.
- •5.4 Давление Лапласа. Капиллярные явления.
- •5.5 Методы определения коэффициента поверхностного натяжения
- •1. Метод отрыва капель
- •2. Метод отрыва кольца
- •Глава 6. Вязкость жидкости
- •6.1 Вязкость жидкости. Закон ньютона. Ньютоновские и неньютоновские жидкости. Реологические свойства биологических жидкостей в норме и при патологиях
- •6.2 Ламинарное течение жидкостей по цилиндрическим трубам с жёсткими стенками. Формула пуазейля. Закон гагена – пуазейля
- •1. Метод капиллярного вискозиметра (оствальда).
- •2. Метод падающего шарика (стокса)
- •Глава 7 твёрдые и жидкие кристаллы. Стеклообразное состояние вещества. Полимеры.
- •7.1. Фазовые переходы. Плавление, кристаллизация, сублимация.
- •7.2.Кинетические превращения. Стеклование и размягчение
- •7.3. Жидкие кристаллы
- •7.4. Кристаллические модификации твёрдых кристаллов.
- •7.5 Механические свойства твёрдых тел. Закон гука. Упругость и пластичность
- •7.6 Полимеры. Их кристаллическое, стеклообразное, высокоэластическое, вязкотекучее состояние.
- •Глава 8. Процессы переноса
- •8.1. Диффузия
- •8.2. Теплопроводность
- •8.3. Вязкость
- •8.5. Общий вид уравнений процессов переноса
- •Раздел II
- •Глава 1. Механические колебания
- •1.2. Свободные незатухающие механические колебания
- •1.3 Смещение, скорость и ускорение гармонически колеблющегося тела
- •1.4. Энергия гармонически колеблющегося тела
- •1.5. Свободные затухающие колебания
- •1.6 Вынужденные колебания. Резонанс
- •1.7. Автоколебания
- •1.8. Сложения гармонических колебаний, направленных по одной прямой. Теорема фурье. Гармонический спектр сложного колебания
- •Вопросы и задачи к главе 1
- •Глава 2. Механические волны
- •2.1 Механические волны, продольные и поперечные волны
- •2.2. Уравнение и график плоской незатухающей гармонической волны
- •2.3. Энергия волны. Поток энергии. Интенсивность.
- •Вопросы и задачи к главе 2
- •Глава 3. Звук
- •3.1. Субъективные (физиологические) характеритики восприятия звука и их связь с объективными, физическими характеристиками звуковой волны
- •3.2 Область слышимости
- •3.3. Закон вебера-фехнера
- •3.4. Уровень интенсивности
- •Уровень громкости, фон
- •Вопросы и задачи к главе 3
- •Глава 4. Ультразвук. Его применение в медицине инфразвук
- •4.1. Физические свойства ультразвука
- •1. Частотный диапазон ультразвука
- •2. Скорости распространения ультразвука
- •3. Особенности физических свойств ультразвука
- •4. Отражение ультразвука на границе раздела сред
- •5. Поглощение ультразвука
- •4.2 Действие ультразвука на вещество. Биологическое действие ультразвука
- •Механическое действие
- •2..Тепловое действие
- •3. Физико-химическое действие ультразвука
- •4. Биологическое действие ультразвука
- •1. Диагностика.
- •4.4.Источники и приёмники ультразвука
- •1. Пьезоэлектрические излучатели-приёмники
- •2. Магнитострикционные излучатели ультразвука
- •Инфразвук
- •Вопросы и задачи к главе 4
- •Глава 5. Электромагнитные колебания и волны
- •5.1. Некоторые необходимые сведения об основах электричества и магнетизма.
- •Электрические заряды
- •Закон кулона
- •Электроёмкость электрического конденсатора
- •6) Сила ампера -
- •8) Закон электромагнитной индукции фарадея
- •11)Энергия магнитного поля катушки индуктивности
- •5.3. Идеальный колебательный контур
- •5.4. Реальный колебательный контур
- •5.4. Получение незатухающих электромагнитных колебаний
- •5.5. Основные положения теории максвелла
- •Глава 6. Оптика
- •Корпускулярно – волновая природа света
- •6.2. Интерференция света
- •. Разрешающая способность оптических приборов-
- •. Голография
- •Поляризованный свет
- •Естественный и поляризованный свет.
- •2. Поляризатор и анализатор. Закон Малюса.
- •3. Поляризация света при отражении и преломлении. Закон Брюстера.
- •4. Двойное лучепреломление
- •Получение поляризованного света.
- •6. 11 Вращение плоскости поляризации. Оптическая активность. Поляриметрия.
- •Дисперсия света
- •Нормальная дисперсия
- •Качественное объяснение причины нормальной дисперсии
- •Аномальная дисперсия
- •Поглощение света
- •1.Закон Бугера - Ламберта
- •2. Закон Бера
- •Закон Бугера – Ламберта – Бера
- •Коэффициент пропускания и оптическая плотность. Колориметрия
- •2. Два вида рассеяния
- •3. Закон Рэлея
- •4.Турбидиметрия и нефелометрия.
- •6.14. Элементы геометрической оптики
- •Законы отражения и преломления света
- •Явления предельного преломления и полного внутреннего отражения
- •Волоконная оптика. Световоды
- •4.Линзы. Примеры построения изображений в тонких линзах
- •Микроскоп
- •Оптическая система глаза. Некоторые её недостатки, их исправление
- •Рефрактометр
- •Раздел III . Атомная, ядерная и квантовая физика
- •Глава 1. Тепловое излучение тел
- •Основные характеристики теплового излучения. Абсолютно чёрное тело
- •Закон кирхгофа
- •1.2 Спектр теплового излучения абсолютно чёрного тела.Закон вина. Закон стефана-больцмана.
- •1.3 Гипотеза планка. Формула планка
- •1.5. Примеры применения теплового излучения в фармации и медицине
- •Глава 2. Рентгеновское излучение
- •2.1 Простейшая рентгеновская трубка
- •2.2. Основные свойства рентгеновского излучения.
- •Рентгенодиагностика:
- •Рентгенотерапия.
- •Научные исследования.
- •2.4. Природа рентгеновского излучения
- •2.6 Характеристическое рентгеновское излучение
- •Глава 3. Радиоактивность
- •3.1. Радиоактивность. Виды радиоактивных излучений. Основные типы ядерных распадов.
- •3.2 Основной закон радиоактивного распада
- •3.3 Активность радиоактивных препаратов
- •3.4. Ядерные реакции. Меченые атомы
- •Глава 4. Дозиметрия ионизирующих излучений
- •2) Характеристическое рентгеновское излучение.
- •2) Характеристическое рентгеновское излучение.
- •Глава 5. Элементы квантовой механики.
- •5.1. Волновые свойства микрочастиц. Уравнение дё бройля
- •5.2. Электронный микроскоп
- •5.3. Основные положения квантовой механики
- •5.4. Решение уравнения шрёдингера для частицы в потенциальной яме с бесконечно высокими стенками
- •Глава 6. Люминесценция
- •6.1. Виды люминесценции
- •6.2. Фотолюминесценция. Флюоресценция. Фосфоресценция
- •6.3. Спектр фотолюминесценции. Правило стокса
- •6.4. Люминесцентный анализ. Применение в фармации и медицине
- •6.5. Хемилюминесценция
- •Глава 7. Лазер
- •7.1. Вынужденное излучение. Инверсная заселённость. Метастабильные уровни
- •7.3. Свойства лазерного излучения
- •7.4. Применение лазерного излучения в фармации и медицине
- •Глава 8. Оптическая спектроскопия. Ик- спектроскопия. Радиоспектроскопия.
- •8.1. Спектры испускания и спектры поглощения. Спектрографы. Спектрометры. Спектрофотометры
- •8.2. Атомарные спектры. Энергетические уровни атомов
- •8.3. Молекулярные спектры. Энергетические уровни молекул
- •8.4. Спектры комбинационного рассеяния
- •8.5. Радиоспектроскопия
- •Магнитные свойства вещества
- •Раздел IV. Биофизика
- •Глава 1. Молекулярная биофизика
- •Энтропийный характер упругости биополимеров в высокоэластическом состоянии.
- •1.4. Основные типы межатомных и межмолекулярных взаимодействий
- •1.Ионная связь
- •2.Ковалентная связь
- •3.Межатомное отталкивание
- •4. Донорно- акцепторная связь
- •5. Водородная связь
- •1. Ориентационная связь
- •3. Индукционная связь
- •3. Дисперсионная связь
- •4. Межмолекулярное отталкивание
- •5. Гидрофобные взаимодействия
- •Глава 2. Биологические мембраны
- •. Исследование структуры биологических мембран с помощью физических методов.
- •2.3. Жидкостно-мозаичная модель биомембран
- •2.4. Модельные липидные мембраны.
- •2.5. Физические свойства мембран и методы их исследования.
- •2.6. Физическое состояние и фазовые переходы фосфолипидного бислоя
- •Глава 3. Термодинамика биологических систем.
- •3.1 Применение первого начала термодинамики к биологическим системам. Прямая и непрямая калориметрия. Энергетический баланс организма.
- •3.2. Применение второго начала термодинамики к живым системам. Уравнение пригожина.
- •3.3 Сопряженные процессы. Сопряженные процессы созидания и разрушения
- •3.4 Стационарное состояние. Теорема пригожина. Аутостабилизация. Адаптация.
- •Глава 4. Транспорт веществ через биологические мембраны.
- •4.1 Пассивный и активный транспорт веществ
- •Глава 5. Биоэлектрические потенциалы
- •5.1Виды биопотенциалов. Их виды: покоя, действия. Природа биопотенциалов
- •5.2. Методы регистрации биопотенциалов. Микроэлектроды.
- •5.3 Биопотенциалы покоя. Уравнение Гольдмана, уравнение Нернста. Роль ионных насосов в создании биопотенциала покоя
- •Глава 6. Биофизика нервого импульса
- •6.1. Потенциал действия и его свойства
- •Уравнение Ходжкина-Хаксли
- •6.3.Метод фиксации мембранного потенциала. Ионные токи. Ионные каналы
- •Глава 7. Моделирование биофизических процессов
- •7.1 Моделирование биологических процессов. Моделирование физическое, аналоговое, математическое. Основные требования к моделям.
- •Математические модели роста популяции
- •7.3 Фармакокинетическая модель
Глава 7. Моделирование биофизических процессов
Моделирование (в первую очередь математическое моделирование) – основной метод биофизики сложных систем. Моделирование – древнейший метод познания. Наскальная живопись, магические фигурки, ритуальные охотничьи танцы, детские игры, эксперименты на подопытных животных – все это примеры моделирования явлений окружающего мира.
Прогресс современной медицины и фармации в значительной степени определяется еще большим использованием математических методов, в том числе математического моделирования. Исследования на математических моделях функционирования организма в норме, при патологии и при лечебном воздействии, развития заболевания, лечебного процесса, действия фармацевтических препаратов, работы медицинских учреждений необходимы для выведения медицинской и фармацевтической науки и практики на уровень, соответствующий последним научно-техническим достижениям.
7.1 Моделирование биологических процессов. Моделирование физическое, аналоговое, математическое. Основные требования к моделям.
Моделирование – метод исследования, при котором действительный объект изучения (или явление) заменяется другим, подобным ему, который и называется моделью.
(Следовательно, модель – это другой объект исследования, который изучают вместо объекта, который на самом деле интересует исследователя. Модель на него похожа по тем свойствам, которые надо изучить. А заменяют объект изучения моделью, потому что модель более удобна для изучения ).
Моделирование – один из эффективнейших методов познания действительного мира, в том случае, когда объект изучения очень сложен и нельзя рассмотреть его сразу во всех деталях, учесть все его внутренние связи и взаимодействия с внешней средой.
Биологические системы отличаются исключительной сложностью, иерархичностью, динамичностью и вариабельностью. Поэтому в биологии , медицине, фармации часто пользуются моделями, не описывающими всей сложности изучаемого объекта, но отражающими лишь некоторые его свойства, наиболее существенные в данном исследовании.
Модели, применяемые в биологии, медицине и фармации, можно разделить на:
Физические модели – подобные изучаемому объекту по своей природе или по геометрическим формам, или по материалу, из которого они изготовлены или по выполняемой функции. Физические модели могут отличаться от изучаемого объекта размерами, скоростями протекания процессов, материалов и т. д. Классические примеры физических моделей – детские игрушки, модели в самолето- и кораблестроении, манекены, образцы для исследования физико-химических свойств материалов, анализы крови, мочи и т.д.
К физическим моделям относятся и биологические модели: подопытные животные, изолированные органы, образцы тканей, культуры клеток, искусственные биологические мембраны.
Аппарат «искусственная почка», аппарат искусственного дыхания, различные протезы - также примеры физических моделей.
Математические модели – система математических уравнений, формул, функций, графиков, описывающих те или иные свойства изучаемого объекта, процесса, явления. Например, математические модели генерации биопотенциалов и нервного импульса: уравнения Нернста, Гольдмана, Ходжкина-Хаксли.
Аналоговые модели могут отличаться от объекта изучения и по природе, и по геометрическим формам, и по материалу, но описываются теми же математическими зависимостями, что и исследуемая система.
В современной биологии, биофизике, медицине, фармации наиболее развиты математические модели.
Преимущества математических моделей:
1)точность
2) экономичность
3) позволяют не подвергать опасности жизнь пациентов и лабораторных животных
4) позволяют сокращать время исследований.
Математические модели биологических систем - это чаще всего совокупность дифференциальных уравнений, которые определяют зависимость между параметрами, характеризующими функционирование системы или взаимодействие системы с внешней средой. Важно подчеркнуть, что математические модели моделируют функционирование живого организма, органов, тканей и клеток и, как правило, не моделируют его анатомическое строение.
Для реализации математических моделей широко используются компьютеры (ЭВМ). Электрические процессы в ЭВМ моделируют процессы в биологическом объекте, они описываются одними и теми же уравнениями. На ЭВМ проводят так называемые машинные эксперименты, например, различных патологических процессов в кардиологии, развития эпидемий, действия лекарственных веществ и т.д. При эксперименте на ЭВМ можно изменять масштаб по времени: ускорить или, наоборот, замедлить течение процесса. Изменяя дифференциальные уравнения, изменяя коэффициенты или вводя новые члены, варьируют свойства моделируемого объекта, либо учитывают различные факторы внешнего воздействия. Соответственно вносятся изменения в программы ЭВМ. Можно быстро получить прогноз поведения системы (течения заболевания, эффективности лечения, мер по борьбе с эпидемией, эффективности фармацевтического препарата и т.д.).
Модель должна отвечать основным требованиям:
адекватность( соответствие модели объекту). Адекватность моделируемых свойств свойствам объекта должны проверяться и при выборе модели и при сравнении результатов моделирования с поведением объекта;
должны быть четко установлены границы применимости модели, поскольку ни одна модель не дает исчерпывающего описания объекта.
Диалектическое взаимоотношение моделируемого объекта и модели заключается в том, что правильно выбранная модель отражает основные интересующие исследователя свойства объекта, однако модель не идентична объекту, она всегда описывает лишь ограниченный набор его свойств, описывает наиболее существенные для данного рассмотрения свойства, отвлекаясь от несущественных.
Если модель перестает соответствовать экспериментальным данным об изучаемой системе или требуется описать свойства объекта, которые ею не моделируются, надо внести исправления в модель, расширить границы ее применения, или отказаться от этой модели.