Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Деформация называется упругой.doc
Скачиваний:
3
Добавлен:
05.08.2019
Размер:
818.69 Кб
Скачать

Энергия упругих волн.

В среде распространяется плоская упругая волна и переносит энергию, величина которой в объеме равна:

,

где - объемная плотность среды.

Если выбранный объем записать как , где S – площадь его поперечного сечения, а - его длина, то среднее количество энергии, переносимое волной за единицу времени через поперечное сечение S, называется потоком через его поверхность:

.

Количество энергии, переносимое волной за единицу времени через единицу площади поверхности, расположенной перпендикулярно направлению распространения волны, называется плотностью потока энергии волны.

Эта величина определяется соотношением:

,

где -объемная плотность энергии волны, - фазовая скорость волны. Так как фазовая скорость волны - вектор, направление которого совпадает с направлением распространения волны, то можно величине плотности потока энергии I придать смысл векторной величины:

.

Величина , вектор плотности энергии волны, впервые была введена Н.А. Умовым в 1984 году и получила название вектора Умова. Подобная величина для электромагнитных волн называется вектором Умова - Пойнтинга.

Интерференцией волн называется явление наложение двух и более волн, при котором в зависимости от соотношения между фазами этих волн происходит устойчивое во времени их взаимное усиление в одних точках пространства и ослабление в других.

Устойчивая интерференционная картина возникает только при наложении таких волн, которые имеют одинаковую частоту, постоянную во времени разность фаз в каждой точке пространства. Волны, удовлетворяющие этим условиям и источники, создающие такие волны, называются когерентными. Плоские синусоидальные волны, частоты которых одинаковы, когерентны всегда.

Важным видом продольных волн являются звуковые волны. Так называются волны с частотами 17 – 20000 Гц. Учение о звуке называется акустикой. В акустике изучаются волны, которые распространяются не только в воздухе, но и в любой другой среде. Упругие волны с частотой ниже 17 Гц называются инфразвуком, а с частотой выше 20000 Гц – ультразвуком.

Звуковые волны – упругие колебания, распространяющиеся в виде волнового процесса в газах, жидкостях, твердых телах.

Эффе́кт До́плера — изменение частоты и длины волн, регистрируемых приёмником, вызванное движением их источника и/или движением приёмника. Для волн (например, звука), распространяющихся в какой-либо среде, нужно принимать во внимание движение как источника, так и приёмника волн относительно этой среды. Для электромагнитных волн (например, света), для распространения которых не нужна никакая среда, в вакууме имеет значение только относительное движение источника и приёмника

Эффектом Доплера называют изменение частоты волн, регистрируемых приемником, которое происходит вследствие движения источника этих волн и приемника. Данный эффект наблюдается при распространении звуковых волн (акустический эффект) и электромагнитных волн (оптический эффект).

Сущность явления

Если источник волн движется относительно среды, то расстояние между гребнями волн (длина волны) зависит от скорости и направления движения. Если источник движется по направлению к приёмнику, то есть догоняет испускаемую им волну, то длина волны уменьшается, если удаляется — длина волны увеличивается:

,

где ω0 — частота, с которой источник испускает волны, c — скорость распространения волн в среде, v — скорость источника волн относительно среды (положительная, если источник приближается к приёмнику и отрицательная, если удаляется).

Частота, регистрируемая неподвижным приёмником

.

(1)

Аналогично, если приёмник движется навстречу волнам, он регистрирует их гребни чаще и наоборот. Для неподвижного источника и движущегося приёмника

,

(2)

где u — скорость приёмника относительно среды (положительная, если он движется по направлению к источнику).

Подставив вместо ω0 в формуле (2) значение частоты ω из формулы (1), получим формулу для общего случая: