Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сети_экзамен.docx
Скачиваний:
34
Добавлен:
05.08.2019
Размер:
1.92 Mб
Скачать
  1. Физический уровень стандарта ieee 802.11 а.

Стандарт 802.11a предусматривает использование полосы частот 5,15--5,825 GHz и скорость передачи данных до 54 Mbps. Полоса поделена на три рабочие зоны, каждая из которых имеет ширину 100 MHz и максимально допустимую мощность излучаемого сигнала (в США).

Использование трёх частотных поддиапазонов с общей шириной 300 МГц делает стандарт 802.11а самым, так сказать, широкополосным из семейства стандартов 802.11 и позволяет разбить весь частотный диапазон на 12 каналов, каждый из которых имеет ширину 20 МГц, восемь из которых лежат в 200-мегагерцевом диапазоне от 5,15 до 5,35 ГГц, а остальные четыре канала - в 100-мегагерцевом диапазоне от 5,725 до 5,825 ГГц (рис. 18). При этом четыре верхних частотных каналов, предусматривающие наибольшую мощность передачи, используются преимущественно для передачи сигналов вне помещений.

Стандарт 802.11 a базируется на OFDM (Orthogonal Frequency Division Multi plexing – ортогональное мультиплексирование с делением частоты), которое дает механизм для автоматического выбора оптимальной формы волны в условиях фиксированного распределения каналов. С его помощью можно избежать распространения сигнала по многим путям, затухания сиг нала, импульсного шума и интерференции.

В спецификации стандарта 802.11 для беспроводных LAN OFDM используется для модуляции данных и обеспечивает схему, позволяющую использовать широкополосный сигнал в таком окружении, где иначе отраженные сигналы могут вывести из строя приемник, не позволяя ему раскодировать переданные данные, содержащиеся в полученном сигнале.

  1. Физический уровень стандарта ieee 802.11 b.

стандарт IEEE 802.11b не является продолжением стандарта 802.11a, поскольку в них используются различные технологии: DSSS (точнее, его улучшенная версия HR-DSSS) в 802.11b против OFDM в 802.11a. Стандарт предусматривает использование нелицензируемого диапазона частот 2,4 ГГц. Скорость передачи до 11 Мбит/с.

Метод расширения спектра методом прямой последовательности (DSSS - Direct Sequence Spread Spectrum) — широкополосная модуляция с прямым расширением спектра, является одним из трёх основных методов расширения спектра используемых на сегодняшний день. Это метод формирования широкополосного радиосигнала, при котором исходный двоичный сигнал преобразуется в псевдослучайную последовательность, используемую для модуляции несущей.

DSSS можно представить себе следующим образом. Вся используемая «широкая» полоса частот делится на некоторое число подканалов — по стандарту 802.11 этих подканалов 11. Каждый передаваемый бит информации превращается, по заранее зафиксированному алгоритму, в последовательность из 11 бит, и эти 11 бит передаются одновременно и параллельно, используя все 11 подканалов. При приеме, полученная последовательность бит декодируется с использованием того же алгоритма, что и при ее кодировке. Другая пара приемник-передатчик может использовать другой алгоритм кодировки — декодировки, и таких различных алгоритмов может быть много.

Первый очевидный результат применения этого метода — защита передаваемой информации от подслушивания («чужой» DSSS-приемник использует другой алгоритм и не сможет декодировать информацию не от своего передатчика). Благодаря 11-кратной избыточности передачи можно обойтись сигналом очень маленькой мощности (по сравнению с уровнем мощности сигнала при использовании обычной узкополосной технологии), не увеличивая при этом размеров антенн.

При этом сильно уменьшается отношение уровня передаваемого сигнала к уровню шума, (то есть случайных или преднамеренных помех), так что передаваемый сигнал уже как бы неразличим в общем шуме. Но благодаря его 11-кратной избыточности принимающее устройство все же сумеет его распознать.

Еще одно чрезвычайно полезное свойство DSSS-устройств заключается в том, что благодаря очень низкому уровню мощности своего сигнала они практически не создают помех обычным радиоустройствам (узкополосным большой мощности), так как эти последние принимают широкополосный сигнал за шум в пределах допустимого. И наоборот — обычные устройства не мешают широкополосным, так как их сигналы большой мощности «шумят» каждый только в своем узком канале и не могут целиком заглушить весь широкополосный сигнал.

Технология

В каждый передаваемый информационный бит (логический 0 или 1) встраивается последовательность так называемых чипов. Если информационные биты — логические нули или единицы — при потенциальном кодировании информации можно представить в виде последовательности прямоугольных импульсов, то каждый отдельный чип — это тоже прямоугольный импульс, но его длительность в несколько раз меньше длительности информационного бита. Последовательность чипов представляет собой последовательность прямоугольных импульсов, то есть нулей и единиц, однако эти нули и единицы не являются информационными. Поскольку длительность одного чипа в n раз меньше длительности информационного бита, то и ширина спектра преобразованного сигнала будет в n-раз больше ширины спектра первоначального сигнала. При этом и амплитуда передаваемого сигнала уменьшится в n раз.

Чиповые последовательности, встраиваемые в информационные биты, называют шумоподобными кодами, что подчеркивает то обстоятельство, что результирующий сигнал становится шумоподобным и его трудно отличить от естественного шума.

Используемые для уширения спектра сигнала чиповые последовательности должны удовлетворять определённым требованиям автокорреляции. Под термином автокорреляции в математике подразумевают степень подобия функции самой себе в различные моменты времени. Если подобрать такую чиповую последовательность, для которой функция автокорреляции будет иметь резко выраженный пик лишь для одного момента времени, то такой информационный сигнал возможно будет выделить на уровне шума.

  1. Физический уровень стандарта IEEE 802.11 g.

Этот стандарт предусматривает использование диапазона частот 2,4 ГГц, обеспечивая скорость передачи 54 Мбит/с и превосходя, таким образом, стандарт IEEE 802.11b, который обеспечивает скорость передачи 11 Мбит/с. Кроме того, он гарантирует обратную совместимость со стандартом 802.11b. Обратная совместимость стандарта IEEE 802.11g может быть реализована в режиме модуляции DSSS, и тогда скорость передачи будет ограничена одиннадцатью мегабитами в секунду либо в режиме модуляции OFDM, при котором скорость составляет 54 Мбит/с. Таким образом, данный стандарт является наиболее приемлемым при построении беспроводных сетей.

Скорости передачи 1 и 2 Мбит/с, предусмотренные стандартом 802.11g в качестве обязательных скоростей соединения, применяются также и в стандартах 802.11b/b+. Для реализации этих скоростей соединения используются одни и те же технологии модуляции сигнала и уширения спектра DSSS методом прямой последовательности (Direct Sequence Spread Spectrum, DSSS).

Основной принцип технологии уширения спектра (Spread Spectrum, SS) заключается в том, чтобы от узкополосного спектра сигнала, возникающего при обычном потенциальном кодировании, перейти к широкополосному спектру, что позволит значительно повысить помехоустойчивость передаваемых данных.

При потенциальном кодировании информационные биты передаются прямоугольными импульсами напряжений длительности T. При этом ширина спектра сигнала обратно пропорциональна длительности импульса. Поэтому чем меньше длительность импульса, тем больший спектральный диапазон занимает такой сигнал.

Чтобы повысить помехоустойчивость передаваемого сигнала (то есть увеличить вероятность безошибочного распознавания сигнала на приемной стороне в условиях шума), можно воспользоваться методом перехода к широкополосному сигналу, добавляя избыточность в исходный сигнал. Для этого в каждый передаваемый информационный бит встраивают определенный код, состоящий из последовательности так называемых чипов.

Информационный бит, представляемый прямоугольным импульсом, разбивается на последовательность более мелких импульсов-чипов. В результате спектр сигнала значительно расширяется, поскольку ширину спектра можно с достаточной степенью точности считать обратно пропорциональной длительности одного чипа. Такие кодовые последовательности часто называют шумоподобными кодами. Наряду с уширением спектра сигнала уменьшается и спектральная плотность энергии, так что энергия сигнала как бы размазывается по всему спектру, а результирующий сигнал становится шумоподобным, то есть его трудно отличить от естественного шума.

В стандарте 802.11b/b+, кроме скоростей 1 и 2 Мбит/с, обязательными являются также скорости 5,5 и 11 Мбит/с. Поэтому для обеспечения совместимости эти скорости являются обязательными и в стандарте 802.11g.

Для работы на таких скоростях используется иной способ уширения спектра. В данном случае вместо шумоподобных последовательностей Баркера применяются комплементарные коды (Complementary Code Keying, CCK). Однако, кроме функции уширения спектра, ССK-последовательности имеют и другое предназначение. В отличие от 11-чиповых последовательностей Баркера, которых существует всего два варианта (прямая и инверсная) для кодирования логического нуля и единицы, вариантов ССK-последовательностей значительно больше (о том, каким образом они образуются, мы расскажем далее). Использование различных CCK-последовательностей позволяет кодировать в одном символе не один бит, а больше, то есть увеличивать информационную скорость передачи.

В частности, в стандарте 802.11g применяются 64 различные комплементарные последовательности, что позволяет кодировать 8 бит на один символ при скорости 11 Мбит/с и 4 бит на символ при скорости 5,5 Мбит/с. При этом символьная скорость составляет 1,385Ѕ106 символов в секунду при информационной скорости как 11, так и 5,5 Мбит/с.

Комплементарными принято называть такие последовательности, для которых сумма их автокорреляционных функций для любого циклического сдвига, отличного от нуля, всегда равна нулю. Последнее обстоятельство позволяет легко выделять эти последовательности на уровне шума, что в значительной степени увеличивает помехоустойчивость при передаче данных.

В стандарте IEEE 802.11b речь идет о 8-чиповых комплексных комплементарных последовательностях, содержащих элементы с четырьмя различными фазами, значения которых определяются последовательностью входных битов.