
- •Кинематика упругого соударения в лабораторной системе координат
- •Связь углов рассеяния в системе центра инерции с углами рассеяния в лабораторной системе координат
- •Переход от дифференциального сечение рассеяния в единицу телесного угла dw в с.Ц.М. К дифференциальному сечению рассеяния в единицу телесного угла dW в л.С.К.
- •Основные особенности дифференциального сечения упругого рассеяния в кулоновском потенциале в системе центра масс.
- •Дифференциальное сечение передачи энергии в упругом соударении иона с атомом образца для кулоновского потенциала взаимодействия
- •Дифференциальное сечение передачи энергии в неупругих соударениях иона с атомом образца для кулоновского потенциала взаимодействия
- •Экранированный кулоновский потенциал взаимодействия ускоренных ионов с атомами образца и границы его применимости
- •Дифференциальное (Линдхардовское) сечение передачи энергии ионом атому образца для экранированного кулоновского потенциала взаимодействия
- •Понятие тормнозной способности и удельных потерь энергии при движении иона в твердом теле
- •Тормозная способность и удельные потери энергии иона в упругих соударениях с атомами образца для кулоновского потенциала взаимодействия
- •Тормозная способность и удельные потери энергии иона в неупругих соударениях с атомами образца для кулоновского потенциала взаимодействия
- •Ядерная тормозная способность для экранированного кулоновского потенциала взаимодействия
- •Тормозная способность и удельные потери энергии для ионного пучка в многоэлементном образце
- •Распределение имплантированных ионов по длинам пробега
- •Основные характеристики распыленного потока атомов образца при облучении ионным пучком
- •Коэффициент распыления образца ионным пучком
- •Расчет скорости ионного травления
- •Основные закономерности электрон-электронной эмиссии
- •Удельные потери энергии ускоренных электронов при движении в образце
- •Сечение ударной ионизации атомов образца электронным пучком
- •Сечение фотоэффекта и его связь с линейным коэффициентом поглощения рентгеновского излучения
- •Вероятность рентгеновской флуоресценции и Оже-переходов
- •Расчет массового коэффициента поглощения для полиатомных образцов
- •Расчет пробега ускоренных электронов в образце
- •Термоэлектронные эмиттеры
- •Автоэлектронные эмиттеры
- •Принцип действия и основные элементы конструкции электронной пушки
- •Принцип действия и основные элементы конструкции ионного источника с холодным катодом (Пеннинга)
- •Принцип действия и основные элементы конструкции ионного источника типа дуаплазмотрон
- •Разделение ионных пучков по массам в магнитном поле
- •Понятие разрешения по массам магнитного масс-анализатора
Принцип действия и основные элементы конструкции электронной пушки
Принципиальная схема электронной пушки
Электронная пушка состоит из следующих основных узлов:
1. Электронный эмиттер (катод).
2. Управляющий электрод º модулятор º электрод Венельта.
3. Анод с последующей системой фокусирующих электродов.
Испущенные катодом электроны ускоряются к заземленному аноду разностью потенциалов U, которая определяет энергию электронов еU. Между катодом и анодом располагается управляющий электрод (модулятор), ось которого совпадает с острием катода. Модулятор находится под большим отрицательным потенциалом (от 0 до ~ 500 В) чем катод за счет падения напряжения на регулирующем резисторе (электрическая цепь катод – заземленный положительный полюс высоковольтного выпрямителя замыкается потоком электронов, испускаемых катодом).
Подобное расположение катода, модулятора и анода приводит к тому, что испущенные катодом электроны фокусируются за модулятором в пятно минимального диаметра d0. Плоскость с этим пятном называется плоскость кроссовера или просто кроссовером. Из кроссовера электронный пучок выходит с угловой расходимостью a £ 10-3 радиан.
Максимальная плотность электронного тока в кроссовере jз (не путать с j0) определяется выражением
jз = 4Iз/4p d02
Если бы последующие электронные линзы не имели аббераций, то плотность тока на образце была бы равна jз.
Яркость электронной пушки определяется как плотность тока в единицу телесного угла.
Так как a - малый угол, то телесный угол охватывающий расходящийся пучок есть pa2, поэтому
яркость электронной пушки
= jз /pa2
Зависимости Iз и b от напряжения смещения, равного разности потенциалов между катодом и модулятором
Принцип действия и основные элементы конструкции ионного источника с холодным катодом (Пеннинга)
Ионный источник с холодным катодом или ионный источник Пеннинга.
В данном источнике ионов зажигание газового разряда осуществляется за счет пробоя газового промежутка катод-анод, между которыми прикладывается напряжение несколько сотен вольт. Напряжение на разрядном промежутке должно быть минимальным для зажигания и поддержания стабильного газового разряда. Напряжение зажигания зависит от материала катода. Для большинства материалов оно составляет несколько кВ. Однако, для некоторых "низковольтных" материалов", таких как алюминий, магний, оно составляет сотни вольт. У этих материалов тонкая окисная пленка на поверхности понижает напряжение зажигания за счет того, что окисная пленка является диэлектриком, а у диэлектриков большой коэффициент ионно-электронной эмиссии.
Газовый разряд горит в продольном магнитном поле, создаваемом, как правило, постоянным магнитом с индукцией несколько кГс, между двумя катодами и кольцевым анодом. Катоды источника изготавливаются из алюминия, корпус – из мягкого железа для замыкания магнитных линий. Эмиссия электронов из катодов происходит за счет их бомбардировки ионами разряда. За счет приложенного магнитного поля электроны движутся по спирали, что увеличивает их путь и число ионизирующих соударений на пути катод-анод.
Давление рабочего газа в ионном источнике 10-3-10-4 Торр.
Извлекаемый ионный ток в стационарном режиме до нескольких миллиампер.
Основные достоинства ионного источника Пеннинга:
простота электропитания, под высоким потенциалом, который прикладывается к корпусу источника, находится только один регулируемый выпрямитель питания анода,
отсутствие накаливаемого катода, что позволяет длительно эксплуатировать источник без вскрытия на атмосферу.
низкое рабочее давление в ионном источнике.
Недостатком является малый вытягиваемы ионный ток. Однако, в случаях, когда не требуются его большие значения, простота источника Пеннинга является решающим обстоятельством.