Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпор.механика.docx
Скачиваний:
23
Добавлен:
05.08.2019
Размер:
592.68 Кб
Скачать

Современная формулировка

Ускорение тела прямопропорционально равнодействующей сил, приложенных к телу, и обратно пропорционально его массе. При подходящем выборе единиц измерения, этот закон можно записать в виде формулы:

где   — ускорение материальной точки;  — сила, приложенная к материальной точке; m — масса материальной точки.

Или в более известном виде:

В случае, когда масса материальной точки меняется со временем, второй закон Ньютона формулируется с использованием понятия импульс:

В инерциальной системе отсчета скорость изменения импульса материальной точки равна равнодействующей всех приложенных к ней сил.

где   — импульс точки,

где   — скорость точки;

t — время;  — производная импульса по времени.

Когда на тело действуют несколько сил, с учётом принципа суперпозиции второй закон Ньютона записывается:

или

Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта. Для скоростей, приближенных к скорости света, используются законы теории относительности.

Нельзя рассматривать частный случай (при  ) второго закона как эквивалент первого, так как первый закон постулирует существование ИСО, а второй формулируется уже в ИСО.

Третий закон Ньютона. Этот закон объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой  , а второе — на первое с силой  . Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются.

Материальные точки попарно действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

Импульс. Закон сохранения импульса.

При решении динамических задач необходимо знать какие силы действуют на тело, закон, позволяющий рассчитать конкретную силу. Цель: получить решение задачи механики исходя из начальных условий, не зная конкретного вида взаимодействия.

Законы Ньютона в полученной ранее форме не позволяют решать задачи на движение тела с переменной массой и при скоростях, сравнимых со скоростью света. Цель: получить записи законов Ньютона в форме, справедливой для этих условий.

Импульс силы    Векторная физическая величина, являющаяся мерой действия силы за некоторый промежуток времени.  - импульс силы  за малый промежуток времени t.

Вектор импульса силы сонаправлен с вектором силы.

[ I ]= Н.с

Импульс тела. (Количество движения)      Векторная физическая величина, являющаяся мерой механического движения и равная произведению массы тела на его скорость.

Вектор импульса тела сонаправлен с вектором скорости тела.

[ p ]=  кг м/с

Основное уравнение динамики

Из второго закона Ньютона: 

 

Тогда получим:  -

 

второй закон Ньютона в импульсной  форме

( Dt = t - t= t  при t0 = 0).

Импульс силы равен изменению импульса тела.  Вектора импульса силы и изменения импульса тела сонаправлены.

 Неупругий удар (шарик "прилипает" к стенке):

Абсолютно упругий удар (шарик отскакивает с прежней по величине скоростью):

Закон сохранения импульса.

До взаимодействия

После взаимодействия

Согласно 3 з-ну Ньютона:  , следовательно: 

 

Геометрическая (векторная) сумма импульсов взаимодействующих тел, составляющих замкнутую систему, остается неизменной.

Замкнутой называется система тел, взаимодействующих только друг с другом и не взаимодействующих с другими телами. Можно пользоваться и для незамкнутых систем, если сумма внешних сил, действующих на тела системы, равна нулю, или процесс происходит очень быстро, когда внешними воздействиями можно пренебречь (взрыв, атомные процессы).

В общем виде: т.к. система замкнутая, то  , следовательно 

 

Примеры применения закона сохранения импульса:

1. Любые столкновения тел (биллиардных шаров, автомобилей, элементарных частиц и т.д.);

2. Движение воздушного шарика при выходе из него воздуха;

3. Разрывы тел, выстрелы и т.д.

Центр масс (центр ине́рции; барице́нтр от др.-греч. βαρύς «тяжёлый» и κέντρον «центр») в механике — это геометрическая точка, характеризующая движение тела или системы частиц как целого.

Определение

Положение центра масс (центра инерции) системы материальных точек в классической механике определяется следующим образом:

где

 — радиус-вектор центра масс,

 — радиус-вектор i-й точки системы,

 — масса i-й точки.

Для случая непрерывного распределения масс:

где:

 — суммарная масса системы,

 — объём,

 — плотность.

Центр масс, таким образом, характеризует распределение массы по телу или системе частиц.

Закон движения центра масс.

Воспользовавшись законом изменения импульса,  получим закон движения центра масс:

                                  dP/dt = M∙dVc/dt = ΣFi

Центр масс системы движется так же, как двигалась бы частица с массой, равной массе системы, под действием силы, равной векторной сумме всех внешних сил, действующих на входящие в систему частицы.

В частности, центр масс замкнутой системы относительно произвольной ИСО движется равномерно прямолинейно или покоится. Изменение импульса центра масс происходит за счет внешних сил.

Внутренние силы не влияют на характер его движения, если внешнее воздействие на систему постоянно и однородно. Например, во время салюта движение центра масс разорвавшегося пиротехнического снаряда в постоянном однородном поле силы тяжести происходит по параболе.

Если внешнее воздействие изменяется, то на различные части системы начинают действовать разные силы и характер движения центра масс меняется. В качестве примера рассмотрим движение системы, состоящей из одного тела - снаряда. В случае падения одной из частей разорвавшегося в воздухе снаряда на землю в системе появится новая внешняя сила - сила реакции опоры. Характер движения центра масс системы (осколков снаряда) при этом изменится. Наличие внутренних сил в этом примере является необходимым условием изменения характера движения центра масс системы. Без этих сил, обусловивших распад снаряда на части, не произошло бы изменения траектории его движения вплоть до падения снаряда на землю.

Работа переменной силы. Рассмотрим материальную точку, движущуюся под действием силы Р по прямой. Если действующая сила постоянна и направлена вдоль прямой, а перемещение равно s, то, как известно из физики, работа А этой силы равна произведению Ps. Теперь выведем формулу для подсчета работы, совершаемой переменной силой. 

Пусть точка движется по оси Ох под действием силы, проекция которой на ось Ох есть функция f от х. При этом мы будем предполагать, что f есть непрерывная функция. Под действием этой силы материальная точка переместилась из точки М (а) в точку М (b) (рис. 1, а). Покажем, что в этом случае работа А подсчитывается по формуле 

 (1)

Разобьем отрезок [а; b] на п отрезков одинаковой длины  .Это отрезки [а; x1], [x1; x2],..., [xn-1;b] (рис. 1,6). Работа силы на всем отрезке [а; b] равна сумме работ этой силы на полученных отрезках. Так как f есть непрерывная функция от x, при достаточно малом отрезке [а; x1] работа силы на этом отрезке приблизительно равна f (а) (x1—а) (мы пренебрегаем тем, что f на отрезке меняется). Аналогично работа силы на втором отрезке [x1; x2] приближенно равна f (x1) (x2 — x1) и т. д.; работа силы на n-ом отрезке приближенно равна f (xn-1)(b — xn-1). Следовательно, работа силы на всем отрезке [а; b] приближенно равна: 

и точность приближенного равенства тем выше, чем короче отрезки, на которые разбит отрезок [а;b] Естественно, что это приближенное равенство переходит в точное, если считать, что n→∞: 

Поскольку An при n →∞ стремится к интегралу рассматриваемой функции от а до b, формула (1) выведена.  Мощность. Мощность P - это скорость совершения работы,

Здесь v - скорость материальной точки, к которой приложена сила  Кинетическая энергия частицы. Так как частицы вещества движутся, они обладают кинетической энергией. Кинетическая энергия частиц зависит от температуры тела.

Консервативные силы