
- •2. Использование законов ома и кирхгофа при расчете и анализе электрических цепей
- •3. Электрические цепи с одним источником энергии и пассивными элементами. Простейшая цепь с одним приемником
- •4. Электрические цепи с последовательным соединением резистивных элементов
- •5. Электрические цепи с параллельным соединением резистивных элементов
- •6. Электрические цепи,содержащие соединения резистивных элементов треугольником
- •7. Понятие об источнике тока
- •8. Метод законов кирхгофа. Метод контурных токов
- •9. Метод узлового напряжения
- •10. Метод наложения
- •11. Метод эквивалентного генератора
- •12. Получение синусоидальной эдс. Основные соотношения
- •13. Цепь, содержащая катушку с активным сопротивлением r и индуктивностью l
- •14. Цепь, содержащая резистивный и емкостной элементы
- •15. Последовательное соединение r, l, c
- •16. Активная, реактивная и полная мощности цепи
- •17. Резонанс напряжений
- •18. Резонанс токов
- •19. Способы соединения фаз источников и приемников. Положительные направления эдс, напряжений и токов
- •20. Соотношения между фазными и линейными напряжениями источников. Номинальные напряжения
- •21. Соединения приемников звездой
- •22. Соединения приемников треугольником
- •23. Устройство и принцип действия магнитных устройств
- •24. Понятие о двухтактных и трехтактных магнитных устройствах
- •25. Магнитоэлектрическая система
- •26. Электромагнитная система
- •27. Электродинамическая система
- •28. Погрешности измерений электроизмерительных приборов
- •29. Измерение тока
- •30. Измерение напряжения
- •31. Измерения мощности
- •32. Измерение сопротивлений
- •33. Электронно‑лучевой осциллограф
- •34. Назначение, устройство и принцип действия трансформатора
- •35. Трехфазные трансформаторы
- •36. Потери мощности и кпд трансформатора
- •37. Назначение и устройство машин постоянного тока
- •38. Принцип действия генератора и двигателя
- •39. Эдс якоря и электромагнитный момент машин постоянного тока
- •40. Явление коммутации в машинах постоянного тока
- •41. Классификация генераторов постоянного тока по способу возбуждения. Схемы включения генераторов
- •42. Пуск двигателей
- •43. Тормозные режимы работы двигателей
- •44. Потери мощности и кпд машин постоянного тока
- •45. Устройство асинхронного двигателя трехфазного тока
- •46. Принцип действия асинхронного двигателя
- •47. Вращающееся магнитное поле
- •48. Эдс, частота тока ротора, скольжение
- •49. Электромагнитная мощность и потери в асинхронном двигателе
- •50. Момент, развиваемый двигателем
- •51. Механическая характеристика асинхронного двигателя
- •52. Паспортные данные двигателя. Расчет и построение механической характеристики
- •53. Пуск асинхронных двигателей
- •54. Энергетические показатели асинхронного двигателя
- •55. Асинхронный тахогенератор
- •56. Вращающийся трансформатор
- •57. Понятие о линейном трехфазном асинхронном двигателе
- •58. Назначение и устройство синхронных машин
- •59. Принцип действия генератора
- •60. Принцип действия двигателя
- •61. Схема включения и основные зависимости синхронного генератора
- •62. Векторные диаграммы синхронного генератора
- •63. Основные характеристики синхронного генератора
- •64. Векторные диаграммы синхронного генератора
- •65. Угловая и механическая характеристика синхронного двигателя
- •66. Пуск синхронного двигателя
- •67. Аппаратура автоматического управления и простейшие схемы управления электроприводами
- •68. Бесконтактные системы управления
- •69. Трехэлектродные лампы. Действие управляющей сетки
- •70. Электроизмерительные лампы
- •71. Электронноолучевые трубки
- •72. Фотоэлементы с внешним фотоэффектом
- •73. Электропроводность полупроводников
- •74. Свойства p‑n– перехода
- •75. Устройство и принцип действия точечных триодов
- •76. Принцип действия усилителя
- •77. Характеристики усилителей
- •78. Классы усиления
- •79. Виды обратной связи. Усилитель напряжения
- •80. Двухтактные усилители мощности
- •81. Усилители мощности на полупроводниковых триодах
- •82. Генераторы гармонических колебаний типа rc
- •83. Генераторы с самовозбуждением на полупроводниковых триодах
- •84. Генераторы низкой частоты на биениях
- •85. Принцип действия выпрямительного устройства
- •86. Стабилизатор тока
- •87. Стабилизатор постоянного напряжения
- •88. Амплитудная модуляция
- •89. Распространение электромагнитных волн различных длин
- •90. Основные положения радиосвязи
4. Электрические цепи с последовательным соединением резистивных элементов
Последовательным называется такое соединение элементов, когда условный конец первого элемента соединяется с началом второго, конец второго – с началом третьего и т. д. Характерным для последовательного соединения является один и тот же ток во всех элементах.
Рис. 4. Схема электрических цепей с последовательным соединением резистивных элементов
Пример: последовательно с приемником r часто включается резистор rр для регулирования напряжения, тока и мощности приемника (рис. 4а). Для расширения пределов измерения вольтметров последовательно с ними включают добавочные резисторы rд (рис. 4б). С помощью реостата, включаемого последовательно в различные ветви цепи двигателя постоянного тока, производят изменение его пускового тока или частоты вращения.
В общем случае при последовательном соединении n резистивных элементов (рис. 4в) ток в цепи, напряжения на элементах и потребляемые ими мощности определяются следующими соотношениями:
где k = 1, 2, ..., n – номер элемента;
– эквивалентное сопротивление цепи.
Напряжение и мощность всей цепи:
Соотношение между напряжениями, мощностями и сопротивлениями элементов:
где l = 1, 2, ..., n – номер элемента.
Приемники электрической энергии последовательно, как правило, не соединяются, так как при этом требуется согласование номинальных данных приемников, исключается возможность независимого их включения и отключения, а при выходе из строя одного из приемников отключаются также остальные приемники. Чаще их включают параллельно.
5. Электрические цепи с параллельным соединением резистивных элементов
Параллельным называется такое соединение резистивных элементов, при котором соединяются между собой как условные начала всех элементов, так и их концы (рис. 5а). Характерным для параллельного соединения является одно и то же напряжение U на выводах всех элементов. Параллельно соединяются различные приемники электрической энергии и другие элементы электрических цепей, рассчитанные на одно и то же напряжение. При параллельном соединении не требуется согласовывать номинальные данные приемников, возможно включение и отключение любых приемников независимо от остальных, а при выходе из строя какого(либо приемника остальные остаются включенными.
Рис. 5. Схемы электрических цепей с параллельным соединением резистивных элементов
Параллельное соединение применяется часто для расширения пределов измерения амперметров (рис. 5б): если ток I в электрической цепи превышает номинальный ток Iном амперметра, параллельно с ним включают шунтирующий резистор rш. Нередко параллельное соединение используют для уменьшения эквивалентного сопротивления какого‑либо участка электрической цепи.
Токи и мощности параллельно соединенных ветвей (рис. 5а) при U = const не зависят друг от друга и определяются по формулам:
Ток и мощность всей цепи:
где
– эквивалентная проводимость;
rэ = 1 / gэ – эквивалентное сопротивление.
Соотношения между токами, мощностями, проводимостями и сопротивлениями:
При увеличении числа параллельно соединенных ветвей эквивалентная проводимость электрической цепи возрастает, а эквивалентное сопротивление, соответственно, уменьшается. Это приводит к увеличению тока I. Если напряжение остается постоянным, то увеличивается также общая мощность P; токи и мощности ранее включенных ветвей не изменяются.