Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по ТОЭ 3 часть.doc
Скачиваний:
43
Добавлен:
04.08.2019
Размер:
1.69 Mб
Скачать

Входное сопротивление в этом режиме

(13.53)

имеет чисто реактивный характер и зависит от длины линии (рис. 13.14).

Следовательно, изменяя длину линии, в режиме короткого замыкания можно изменять величину и характер входного сопротивления.

Если линия нагружена на реактивное сопротивление, то последнее можно заменить отрезком линии, работающей в режиме холостого хода или короткого замыкания (рис. 13.15).

а) б)

Рис. 13.15. Замена реактивного сопротивления отрезком линии

Из рассмотренных случаев видно, что в режиме стоячих волн отсутствует перенос энергии.

коэф-т бегущей волны: Kбв = (1 - n) / (1 + n)

13. Режим холостого хода ( ). Для комплексных напряжений и тока имеем:

В рассматриваемом режиме напряжение и ток во всех точках линии имеют одинаковую фазу. Действительно, для мгновенного значения напряжения при холостом ходе получим . Согласно этому соотношению, напряжение во всей линии изменяется синфазно. Эти колебания представляют собой так называемые стоячие волны. На рис. 25.4 изображено распределение действующих токов и напряжений для случая, когда l = 2, т. е. длина линии l равна длине волны 

Рис. 25.4

Поскольку в отдельных точках линии, как следует из рисунка, напряжение сохраняет нулевое значение, то по линии в целом отсутствует передача мощности.

Входное сопротивление разомкнутой на конце линии Zвх = – jZ ctg l имеет место чисто реактивный характер (волновое сопротивление Z линии без потерь — вещественная величина). В зависимости от длины линии входное сопротивление может иметь как емкостный (например, при 0 < l < /2), так и индуктивный характер (/2 < l < ). Если длина разомкнутой на конце линии l равна четверти длины волны (l = /2), то ее входное сопротивление равно нулю.

14. Режим короткого замыкания ( ). Распределение комплексных напряжения и тока выражается формулами:

И в этом случае в линии наблюдаются стоячие волны, однако теперь узел напряжения расположен в конце линии (рис. 25.5), а распределение тока в этой точке имеет пучность.

Рис. 25.5

Как и при холостом ходе, передача энергии по линии в целом в этом режиме отсутствует. Для входного сопротивления из общей формулы получим Zвх =jZ tg l. Оно также имеет чисто реактивный характер и в зависимости от длины линии может быть индуктивным или емкостным.

Сопоставляя оба рассмотренных режима (х. х. и к. з.), можно заключить, что соотношение между входными сопротивлениями в обоих режимах существенно зависит от волновой длины линии l/ = l/2. При l/ <1/8 (l < /4) имеем Zвх. к.з. <  Zвх. х.х., однако при /4 < l < /2 это неравенство изменяется на обратное; для четвертьволновой линии (l = /2) Zвх. х.х. = 0, а Zвх. к.з. = . Этот парадоксальный результат объясняется тем, что при холостом ходе в начале линии имеем узел напряжения, а при коротком замыкании — узел тока.

15. При нагрузке линии на емкость или индуктивность с реактивным сопротивлением Xн выходные величины связаны соотношением U2 = jXн I2. Его подстановка в соотношения для напряжения и тока позволяет записать их в виде:

Поскольку реактивное сопротивление нагрузки Xн вещественно, то отсюда вытекает, что и при нагрузке линии без потерь на емкость или индуктивность фаза напряжения и тока во всех точках линии одинакова. Таким образом, и в этом режиме в линии наблюдаются стоячие волны тока и напряжения. 

Для более ясного представления о характере распределения преобразуем полученные выражения, используя представление параметра Z/Xн = tgЭлементарные тригонометрические преобразования позволяют привести рассматриваемые формулы к виду . Эти выражения показывают, что, как и в рассмотренных выше случаях, распределение действующих токов и напряжений имеет синусоидальный характер (см. рис. 25.4), однако в отличие от режимов холостого хода и короткого замыкания в конце линии нет ни узла, ни пучности. Положение узлов и пучностей легко определяется из последних выражений