
- •1)Перемещение,скорость,ускорение.Тангенциальное и нормальное ускорение.
- •2)Магнитное поле тока.Законы Био - Савара - Лапласа и Ампера.Сила Лоренца.
- •5)Законы Ньютона.Масса,сила.Уравнения движения.Фундаментальные взаимодействия в природе - закон всемирного тяготения.
- •6)Правило Лоренца.Индуктивность.Самоиндукция.Взаимоиндукция.Трансформатор.
- •8)Закон Ома для цепей переменного тока с омическим сопротивлением,ёмкостью и индуктивностью.Мощность переменного тока.
- •9)Статистические и термодинамические подходы в термодинамике.Термоденамические пораметры.Уравнение Клайперона - менделеева.
- •11)Работа термодинамической системы.Количество теплоты.Теплоёмкость.Первый закон термодинамики.
- •12)Принцип Гюйгенса - Френеля.Метод зон Френеля.Дифракция Френеля на круглом отверстии.
- •13)Обратимые,необратимые и циклические процессы.Цикл Карно.
- •14)Дифракция Фраунгофера.Дифракция света на щели.Дифракционная решётка.
- •17)Уравнение Эйнштейна.Эффект Комтона.Давление света,опыты п.Н.Лебедева.
- •18)Электростатическая теорема Гаусса.Вектор электрической индукции.Электрическое поле внутри и вне проводника.
- •19)Спектры излучения и поглощения света для атомов и молекул.Опыты Резерфорда.Постулаты Бора.
- •20)Электрическая ёмкость.Конденсаторы.Энергия электрического поля.
- •21)Опыт Франка и Герца.Гипотеза де Бройля.Принцип неопределённости.
- •22)Плотность энергии электростатического поля.Сила и плотность тока.
- •23)Корпускулярно - волновой дуализм: фотоны и микрочастицы.Квантование энергии и момента импульса.
- •24)Закон Ома для участка цепи и замкнутого контура.Электродвижущая сила.
- •25)Спин электрона.Магнитный момент атома.Принцип Паули.
- •26)Закон Ома в дифференциальной форме.Разветвлённые электрические цепи.Правило Кирхгофа.
- •27)Работа и мощность электрического тока.Закон Джоуля - Ленца.Превращения энергии в электрический ток.
- •28)Состав ядра атома.Взаимодействие нуклонов в ядре.
- •29)Ядерные силы и модели атомного ядра.Естественная и искуственная радиоактивность.
- •30)Кинематика движения по криволинейной траектории.Движение по окружности.
- •31)Ядерные реакции,деление ядер.Цепные реакции.
- •32)Коэффициент полезного действия тепловых машин.Второй закон термодинамики.
- •34)Уравнение Эйнштейна.Эффект Комптона.
- •36)Уравнение свободных колебаний модельных систем(груз на пружине,математический и физический маятник)
- •37)Момент импульса материальной точки и системы материальных точек.Момент силы.Закон сохранения и изменения момента импульса.
- •38)Продольные и поперечные волны,поляризация волн.
- •39)Потенциальная энергия системы взаимодействующих тел.Закон сохранения и изменения энергии в механике.
- •40)Сложение колебаний.Затухающие колебания,их характеристики.Вынужденные колебания,явления резонанса.
- •41)Волновое уравнение.Уравнение монохроматической бегущей волны,основные характеристики волн.
- •42)Движение твёрдого тела.Динамика вращательного движения твёрдого тела относительно неподвижной оси.
- •43)Момент инерции твёрдых тел разной формы.Теорема Штейнера.Главные оси инерции.
- •44)Явление интерференции.Поток плотности энергии,связанный с бегущей волной.Стоячие воды.
11)Работа термодинамической системы.Количество теплоты.Теплоёмкость.Первый закон термодинамики.
Термодинамические системы являются системами большого числа частиц, взаимодействующих как друг с другом, так и с внешними полями.важной особенностью термодинамической системы является ее равновесность (равномерное распределение частиц, температуры, концентрации и других характеристик по объему, занимаемому системой).Элементарная работа термодинамической системы над внешней средой может быть вычислена так: сигма*А = (F*dr) = P(ds*dr) = PdV,где ds - нормаль элементарной (бесконечно малой) площадки,P — давление и dV — бесконечно малое приращение объёма.
Коли́чество теплоты́ — энергия, которую получает или теряет тело при теплопередаче. Количество теплоты является одной из основных термодинамических величин.
Количество теплоты является функцией процесса, а не функцией состояния, то есть количество теплоты, полученное системой, зависит от способа, которым она была приведена в текущее состояние.Единицы измерения: Джоули (Дж).Согласно закону сохранения энергии,
ΔA = ΔUА + ΔUВ
где ΔA — макроскопическая работа внешних сил над телом A. Если учесть, что
ΔA = − Aint
где A int— работа, совершённая телом A, то закону сохранения энергии можно придать форму первого начала термодинамики:
ΔQА = ΔUА + A int
Из первого начала термодинамики следует корректность введённого определения количества теплоты, то есть независимость соответствующей величины от выбора пробного тела B и способа теплообмена между телами. Заметим, что для определения количества теплоты необходимо пробное тело, в противном случае первое начало теряет смысл содержательного закона и превращается в определение количества теплоты.
Теплоёмкость тела (обычно обозначается латинской буквой C) — физическая величина, определяющая отношение бесконечно малого количества теплоты δQ, полученного телом, к соответствующему приращению его температуры δT: C = (δQ)/(δT). Удельной теплоёмкостью называется теплоёмкость, отнесённая к единичному количеству вещества. Количество вещества может быть измерено в килограммах, кубических метрах и молях. В зависимости от того, к какой количественной единице относится теплоёмкость, различают массовую, объёмную и молярную теплоёмкость.
Первое начало термодинамики — один из трёх основных законов термодинамики, представляет собой закон сохранения энергии для термодинамических систем.Первое начало термодинамики было сформулировано в середине XIX века в результате работ немецкого учёного Ю. Р. Майера, английского физика Дж. П. Джоуля и немецкого физика Г. Гельмгольца.Согласно первому началу термодинамики, термодинамическая система может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источников энергии. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.Существует несколько эквивалентных формулировок первого начала термодинамики: 1) В любой изолированной системе запас энергии остаётся постоянным.[2] Это — формулировка Дж. П. Джоуля (1842 г.). 2)Количество теплоты, полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил. и др. Для элементарного количества теплоты δQ, элементарной работы δA и малого приращения dU внутренней энергии первый закон термодинамики имеет вид:
dU = δQ − δA + μdN + δA'. Важно заметить, что dU и dN являются полными дифференциалами, а δA и δQ — нет.