Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика.rtf
Скачиваний:
18
Добавлен:
04.08.2019
Размер:
373.03 Кб
Скачать

43)Момент инерции твёрдых тел разной формы.Теорема Штейнера.Главные оси инерции.

Момент инерции — скалярная физическая величина, мера инертности тела во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).Единица измерения СИ: кг·м².Обозначение: I или J.Различают несколько моментов инерции — в зависимости от многообразия, от которого отсчитывается расстояние точек:

- Осевые моменты инерции некоторых тел.

Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси.

- Центробежный момент инерции

Центробежными моментами инерции тела по отношению к осям прямоугольной декартовой системы координат называются следующие величины.

- Геометрический момент инерции

Геометрический момент инерции — геометрическая характеристика сечения вида.

- Центральный момент инерции

Центральный момент инерции можно выразить через главные осевые или центробежные моменты инерции.

- Тензор инерции и эллипсоид инерции

Момент инерции тела относительно произвольной оси, проходящей через центр масс и имеющей направление, заданное единичным вектором.

J = Jc+md2, где JC — известный момент инерции относительно оси, проходящей через центр масс тела,

J — искомый момент инерции относительно параллельной оси,

m — масса тела,

d — расстояние между указанными осями.

Главные оси инерции - три взаимно перпендикулярные оси, которые можно провести через любую точку твердого тела, отличающиеся тем, что если тело, закрепленное в этой точке, привести во вращение вокруг одной из них, то при отсутствии внешних сил оно будет продолжать вращаться вокруг этой оси, как вокруг неподвижной.

44)Явление интерференции.Поток плотности энергии,связанный с бегущей волной.Стоячие воды.

Впервые явление интерференции было независимо обнаружено Робертом Бойлем (1627—1691 гг.) и Робертом Гуком (1635—1703 гг.). Они наблюдали возникновение разноцветной окраски тонких плёнок (интерференционных полос), подобных масляным или бензиновым пятнам на поверхности воды. В 1801 году Томас Юнг (1773—1829 гг.), введя «Принцип суперпозиции», первым объяснил явление интерференции света, ввел термин «интерференция» (1803) и объяснил «цветастость» тонких пленок. Он также выполнил первый демонстрационный эксперимент по наблюдению интерференции света, получив интерференцию от двух щелевых источников света (1802); позднее этот опыт Юнга стал классическим.

Упругая среда, в которой распространяется волна, обладает как кинетической энергией колебательного движения частиц так и потенциальной энергией, обусловленной деформацией среды. Среднее значение плотности энергии за промежуток времени П(пи)/w=Т/2 Поскольку скорость переноса энергии или групповая скорость есть вектор, то и плотность потока энергии можно представить в виде вектора.

Если навстречу друг другу распространяются две гармонические волны

S1=Acos(wt- kх) и S2=Acos(wt+ kх),то образуется стоячая волна

S=S1+S2=2Аcoskx coswt.

В случае стоячей волны переноса энергии нет, т.к. падающая и отраженная волны одинаковой амплитуды несут энергию в противоположных направлениях. Т.о. стоячая волна характеризует колебательное состояние среды.

В заключении отметим, что несмотря на разнообразие волновых явлений, они описываются одинаковыми законами (математичеcкими уравнениями). Это позволяет, например, перенести полученные в данной лекции закономерности для упругих волн на электромагнитные волны.