
- •1.Электрогенератор.Электродвигатель. Применение их технике и технологиях.
- •2.Топливные элементы. Водородная энергетика.
- •3. Промышленные биотехнологии. Пищевые технологии. Производство лекарственных препаратов, продуктов питания.
- •4.Энергосберегающие технологии.
- •5. Радиоактивность и закон радиоактивного распада. Изотопы. Технологии утилизации радиоактивных отходов и материалов.
- •6.Производство металлов (сталь,чучун,алюминий)
- •7.Новые материалы. Синтетические материалы.Полимерные материалы. Термопласты и реактопласты,эластопласты, пластмассы и их применение в технике и технологиях.
- •8.Поведение веществ в магнитных полях. Ферромагнетики и ферриты и их применнеие в технике и технологиях.
- •9.Поведение веществ в электронных полях. Диэлектрики и пьезоэлектрики и их применение в технике и технологиях.
- •10.Ядерная энергия и проблемы её использования. Термоядерный синтез. Энергоэффективные технологии.
- •11.Источники энергии . Способы преобразования энергии. Тэс,гэс,аэс. Альтернативная энергетика.
- •12. Сущность параметров давления и температуры, их влияние на фазовое состояние вещества, использование на практике, в технике и технологиях.
- •14. Электромагнитное излучение и его природа. Шкала электромагнитных волн,области применения различных частотных диапазонов ,использование на практике, в технике и в технологиях.
- •15. Взаимодействие электромагнитного поля и движущегося заряда. Сила Лоренца. Принцип действия электрогенераторов.
- •16. Закон Фарадея и принцип действия электрических трансформаторов. Линии электропередач.
- •17. Техническое использование переменного тока.
- •18. Основные закономерности цепей переменного тока. Закон Ома для цепей переменного тока. Последовательный и параллельный резонансы. Явление резонанса и его применение в технике и технологиях.
- •19. Основные закономерности цепей постоянного тока. Закон Ома, 1-е и 2-е привила Кирхгофа. Применение постоянного тока в технике и технологиях.
- •21. Новые технологии передачи и хранения информации.
- •22.Квантовые эффекты в микромире. Виды спектров. Спектральный анализ и его применение в технике и технологиях.
- •23. Выделение информации на фоне помех. Использование явление резонанса для выделения полезного сигнала. Использование и применение явления резонанса в технике и технологиях.
- •24. Эффект Доплера и его применение в технике и технологиях.
- •25. Физические эффекты (эффект эжекции, гироскопический эффект, центробежная сила, эффект Доплера, акустическая кавитация, диффузия, гидростатическое давление ) в машиностроении.
- •26. Тепловая машина. Цикл Карно. Паровая машина. Использование тепловых машин в технике и технологиях.
- •27. Промышленная переработка топлива (коксование угля, крекинг нефти, переработка нефти методом ректификации)
- •28. Классы точности измерительных приборов. Абсолбтные и относительные погрешности. Измерительные технологии.
- •29. Простые машины (рычаг, блок, наклонная скорость,клин.) строительные машины
- •30.Строительные материалы .Технологии производства строительных материалов.
- •31.Звуковые волны. Инфразвук, гиперзвук, ультразвук и его применение в технике и технологиях.
- •32.Использование достижений естественных наук в приборостроении. Приборостроение.
- •33.Сущность процесса измерения. Виды измерений. Роль измерений в науке, технике. Погрешности измерений, их виды, прчины возникновения.
- •34.Добывающая перерабатывающая промышленность. Инновации в добывающей и перерабатывающей промышленности.
- •35.Сельскохозяйственные и лесные технологии.
- •36. Технологии легкой промышленности.
- •37. Формы движения материи. Потенциальная и кинетическая энергии, их природа и взаимопревращения.
5. Радиоактивность и закон радиоактивного распада. Изотопы. Технологии утилизации радиоактивных отходов и материалов.
Радиоактивность, самопроизвольное (спонтанное) превращение неустойчивого изотопа химического элемента в другой изотоп (обычно — изотоп другого элемента). Сущность явления Р. состоит в самопроизвольном изменении состава атомного ядра, находящегося в основном состоянии либо в возбуждённом долгоживущем (метастабильном) состоянии. Такие превращения сопровождаются испусканием ядрами элементарных частиц либо других ядер.
Закон радиоактивного распада — физический закон, описывающий зависимость интенсивности радиоактивного распада от времени и количества радиоактивных атомов в образце. Открыт Фредериком Содди и Эрнестом Резерфордом, каждый из которых впоследствии был награжден Нобелевской премией. Они обнаружили его экспериментальным путём и опубликовали в 1903 году в работах «Сравнительное изучение радиоактивности радия и тория»[1] и «Радиоактивное превращение»[2], сформулировав следующим образом.
Изото́пы — разновидности атомов (и ядер) одного химического элемента с разным количеством нейтронов в ядре. Название связано с тем, что изотопы находятся в одном и том же месте (в одной клетке) таблицы Менделеева. Химические свойства атома зависят практически только от строения электронной оболочки, которая, в свою очередь, определяется в основном зарядом ядра Z (то есть количеством протонов в нём) и почти не зависит от его массового числа A (то есть суммарного числа протонов Z и нейтронов N). Все изотопы одного элемента имеют одинаковый заряд ядра, отличаясь лишь числом нейтронов. Обычно изотоп обозначается символом химического элемента, к которому он относится, с добавлением верхнего левого индекса, означающего массовое число (например, 12C, 222Rn). Можно также написать название элемента с добавлением через дефис массового числа (например, углерод-12, радон-222). Некоторые изотопы имеют традиционные собственные названия (например, дейтерий, актинон).
Одним из самых надежных способов утилизации радиоактивных отходов является сплавление их со стеклом. Процесс ведется в стекловаренных печах. Ввиду высокой активности отходов, доступ обслуживающего персонала к оборудованию, находящемуся за биозащитой, невозможен. Обычно строится несколько печей, из которых работает одна. После поломки, которую нельзя устранить дистанционно, в работу включается следующая печь. Одновременно приходится использовать новые устройства подачи исходных материалов, слива расплава и т. д.
6.Производство металлов (сталь,чучун,алюминий)
Среди факторов, определяющих возможность и целесообразность практического использования метало и их сплавов, важнейшим является стоимость. Стоимость, в свою очередь, зависит от распространенности металлов в природе, химической устойчивости, определяющей способ производства, масштаба производства, степени совершенства технологии производства, степени совершенства технологии производства, хозяйственной и политической ситуации.
Основным источником добычи металла является земная кора - литосфера.
Можно выделить четыре группы способов производства металлов.
Физические свойства. Простейшим из них является прямое извлечение из природных источников. Примером может служить добыча самородного золота. Некоторые металлы (платину, мышьяк и др.) получают разложением природных соединений при нагревании. Физические способы - наиболее дешевые. Они приемлемы для металлов и соединений, имеющих очень низкую отрицательную энтальпию.
Восстановление неметаллами. Как правило, реакции восстановления идут при высоких температурах. В качестве восстановителей применяют углерод или оксид углерода (для железа, олова и др.), сернистый газ или сульфиды (для меди, ниобия и др.) или водород (для вольфрама, молибдена, рения и др.). способ пригоден дл поучения металлов со сравнительно невысокой энтальпией оксидов и обходиться дороже, чем предыдущий.
Электролиз. Электролиз в водных растворах (меди, хрома, висмута и др.) или в расплавах солей (алюминия, магния и др.) применяется для получения химически активных металлов и стоит еще дороже.
Восстановление металлами (металлотермия). Это способ требует предварительного получения химически чистых метало - восстановителей. Металл восстанавливают из оксидов (титан, бериллий и др.). Это самый дорогой способ.