
- •1.Электрогенератор.Электродвигатель. Применение их технике и технологиях.
- •2.Топливные элементы. Водородная энергетика.
- •3. Промышленные биотехнологии. Пищевые технологии. Производство лекарственных препаратов, продуктов питания.
- •4.Энергосберегающие технологии.
- •5. Радиоактивность и закон радиоактивного распада. Изотопы. Технологии утилизации радиоактивных отходов и материалов.
- •6.Производство металлов (сталь,чучун,алюминий)
- •7.Новые материалы. Синтетические материалы.Полимерные материалы. Термопласты и реактопласты,эластопласты, пластмассы и их применение в технике и технологиях.
- •8.Поведение веществ в магнитных полях. Ферромагнетики и ферриты и их применнеие в технике и технологиях.
- •9.Поведение веществ в электронных полях. Диэлектрики и пьезоэлектрики и их применение в технике и технологиях.
- •10.Ядерная энергия и проблемы её использования. Термоядерный синтез. Энергоэффективные технологии.
- •11.Источники энергии . Способы преобразования энергии. Тэс,гэс,аэс. Альтернативная энергетика.
- •12. Сущность параметров давления и температуры, их влияние на фазовое состояние вещества, использование на практике, в технике и технологиях.
- •14. Электромагнитное излучение и его природа. Шкала электромагнитных волн,области применения различных частотных диапазонов ,использование на практике, в технике и в технологиях.
- •15. Взаимодействие электромагнитного поля и движущегося заряда. Сила Лоренца. Принцип действия электрогенераторов.
- •16. Закон Фарадея и принцип действия электрических трансформаторов. Линии электропередач.
- •17. Техническое использование переменного тока.
- •18. Основные закономерности цепей переменного тока. Закон Ома для цепей переменного тока. Последовательный и параллельный резонансы. Явление резонанса и его применение в технике и технологиях.
- •19. Основные закономерности цепей постоянного тока. Закон Ома, 1-е и 2-е привила Кирхгофа. Применение постоянного тока в технике и технологиях.
- •21. Новые технологии передачи и хранения информации.
- •22.Квантовые эффекты в микромире. Виды спектров. Спектральный анализ и его применение в технике и технологиях.
- •23. Выделение информации на фоне помех. Использование явление резонанса для выделения полезного сигнала. Использование и применение явления резонанса в технике и технологиях.
- •24. Эффект Доплера и его применение в технике и технологиях.
- •25. Физические эффекты (эффект эжекции, гироскопический эффект, центробежная сила, эффект Доплера, акустическая кавитация, диффузия, гидростатическое давление ) в машиностроении.
- •26. Тепловая машина. Цикл Карно. Паровая машина. Использование тепловых машин в технике и технологиях.
- •27. Промышленная переработка топлива (коксование угля, крекинг нефти, переработка нефти методом ректификации)
- •28. Классы точности измерительных приборов. Абсолбтные и относительные погрешности. Измерительные технологии.
- •29. Простые машины (рычаг, блок, наклонная скорость,клин.) строительные машины
- •30.Строительные материалы .Технологии производства строительных материалов.
- •31.Звуковые волны. Инфразвук, гиперзвук, ультразвук и его применение в технике и технологиях.
- •32.Использование достижений естественных наук в приборостроении. Приборостроение.
- •33.Сущность процесса измерения. Виды измерений. Роль измерений в науке, технике. Погрешности измерений, их виды, прчины возникновения.
- •34.Добывающая перерабатывающая промышленность. Инновации в добывающей и перерабатывающей промышленности.
- •35.Сельскохозяйственные и лесные технологии.
- •36. Технологии легкой промышленности.
- •37. Формы движения материи. Потенциальная и кинетическая энергии, их природа и взаимопревращения.
25. Физические эффекты (эффект эжекции, гироскопический эффект, центробежная сила, эффект Доплера, акустическая кавитация, диффузия, гидростатическое давление ) в машиностроении.
Эффект эжекции заключается в том, что поток с более высоким давлением, движущийся с большой скоростью, увлекает за собой среду низкого давления. Увлеченный поток называется эжектируемым. В процессе смешения двух сред происходит выравнивание скоростей, сопровождающееся, как правило, повышением давления.
гироскопический эффект (например юла) - сохранение, направления оси вращения свободно и быстро вращающихся (твердых) тел, сопровождаемое при определенных условиях, как прецессией (движением оси по круговой конической поверхности), так и нутацией (колебательными движениями (дрожанием) оси вращения; отмечено для колебаний полюсов мира в астрономии; (в биологии) особо четко нутационное движение выражено у вьющихся растений.
Гироскопический эффект создается той же самой центробежной силой, которая действует на юлу, вращающуюся, например, на столе.
Центробежная сила - сила, с которой материальная точка, движущаяся равномерно по окружности, действует на связь.
Эффект Доплера - изменение частоты колебаний звуковых или электромагнитных волн, воспринимаемой наблюдателем, вследствие взаимного движения наблюдателя и источника волн. При сближении обнаруживается повышение частоты, при удалении - понижение.
Ярким примером акустической кавитации служит ультразвук. КАВИТАЦИЯ образование газовых пузырьков в жидкости.
Пузырьки захлопываются во время полупериодов сжатия, создавая кратковременные (порядка 10-6 сек) импульсы давления (до 103 Мн/м2 @ 104 кгс/см2 и более), способные разрушить даже весьма прочные материалы. Такое разрушение наблюдается на поверхности мощных акустических излучателей, работающих в жидкости.
Диффузия - явление самопроизвольного проникновения одного вещества в другое вещество, обусловленное тепловым движением атомов, молекул, ионов и других частиц. Скорость протекания процесса диффузии зависит от рода диффундирующих веществ и температуры.
Гидростатическое давление - давление, вызываемое весом жидкости. Гидростатическое давление:
- измеряется высотой столба воды в единицах длины или в атмосферах;
- зависит от координат точки, в которой оно измеряется.
! (ответ неточный) 15вопрос. Выделение информации на фоне помех. Использование явления резонанса для выделения полезного сигнала. Использование и применения явления резонанса в технике и технологиях.
Демодуляция (Детектирование сигнала) — процесс, обратный модуляции колебаний, преобразование модулированных колебаний высокой (несущей) частоты в колебания с частотой модулирующего сигнала.
Для передачи энергии электромагнитной волны используются высокочастотные колебания, а колебания низкой частоты используются для модуляции (слабого изменения амплитуды или фазы) высокочастотных колебаний. На принимающей станции из этих сложных колебаний с помощью специальных методов снова выделяют колебания низкой частоты, которые после усиления подаются на громкоговоритель. Этот процесс выделения информации из принятых модулированных колебаний получил название демодуляции, или детектирования колебаний.
Резона́нс — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды — это лишь следствие резонанса, а причина — совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс — явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы.
Сигналы являются материальными носителями информации. По своей физической природе сигналы могут быть электрическими, электромагнитными, акустическими и т.д., т.е. сигналами, как правило, являются электромагнитные, механические и другие виды колебаний (волн), причем информация содержится в их изменяющихся параметрах.
В зависимости от природы сигналы распространяются в определенных физических средах. В общем случае средой распространения могут быть газовые (воздушные), жидкостные (водные) и твердые среды, например, воздушное пространство, конструкции зданий, соединительные линии и токопроводящие элементы, грунт (земля) и т.п.