
- •1.Электрогенератор.Электродвигатель. Применение их технике и технологиях.
- •2.Топливные элементы. Водородная энергетика.
- •3. Промышленные биотехнологии. Пищевые технологии. Производство лекарственных препаратов, продуктов питания.
- •4.Энергосберегающие технологии.
- •5. Радиоактивность и закон радиоактивного распада. Изотопы. Технологии утилизации радиоактивных отходов и материалов.
- •6.Производство металлов (сталь,чучун,алюминий)
- •7.Новые материалы. Синтетические материалы.Полимерные материалы. Термопласты и реактопласты,эластопласты, пластмассы и их применение в технике и технологиях.
- •8.Поведение веществ в магнитных полях. Ферромагнетики и ферриты и их применнеие в технике и технологиях.
- •9.Поведение веществ в электронных полях. Диэлектрики и пьезоэлектрики и их применение в технике и технологиях.
- •10.Ядерная энергия и проблемы её использования. Термоядерный синтез. Энергоэффективные технологии.
- •11.Источники энергии . Способы преобразования энергии. Тэс,гэс,аэс. Альтернативная энергетика.
- •12. Сущность параметров давления и температуры, их влияние на фазовое состояние вещества, использование на практике, в технике и технологиях.
- •14. Электромагнитное излучение и его природа. Шкала электромагнитных волн,области применения различных частотных диапазонов ,использование на практике, в технике и в технологиях.
- •15. Взаимодействие электромагнитного поля и движущегося заряда. Сила Лоренца. Принцип действия электрогенераторов.
- •16. Закон Фарадея и принцип действия электрических трансформаторов. Линии электропередач.
- •17. Техническое использование переменного тока.
- •18. Основные закономерности цепей переменного тока. Закон Ома для цепей переменного тока. Последовательный и параллельный резонансы. Явление резонанса и его применение в технике и технологиях.
- •19. Основные закономерности цепей постоянного тока. Закон Ома, 1-е и 2-е привила Кирхгофа. Применение постоянного тока в технике и технологиях.
- •21. Новые технологии передачи и хранения информации.
- •22.Квантовые эффекты в микромире. Виды спектров. Спектральный анализ и его применение в технике и технологиях.
- •23. Выделение информации на фоне помех. Использование явление резонанса для выделения полезного сигнала. Использование и применение явления резонанса в технике и технологиях.
- •24. Эффект Доплера и его применение в технике и технологиях.
- •25. Физические эффекты (эффект эжекции, гироскопический эффект, центробежная сила, эффект Доплера, акустическая кавитация, диффузия, гидростатическое давление ) в машиностроении.
- •26. Тепловая машина. Цикл Карно. Паровая машина. Использование тепловых машин в технике и технологиях.
- •27. Промышленная переработка топлива (коксование угля, крекинг нефти, переработка нефти методом ректификации)
- •28. Классы точности измерительных приборов. Абсолбтные и относительные погрешности. Измерительные технологии.
- •29. Простые машины (рычаг, блок, наклонная скорость,клин.) строительные машины
- •30.Строительные материалы .Технологии производства строительных материалов.
- •31.Звуковые волны. Инфразвук, гиперзвук, ультразвук и его применение в технике и технологиях.
- •32.Использование достижений естественных наук в приборостроении. Приборостроение.
- •33.Сущность процесса измерения. Виды измерений. Роль измерений в науке, технике. Погрешности измерений, их виды, прчины возникновения.
- •34.Добывающая перерабатывающая промышленность. Инновации в добывающей и перерабатывающей промышленности.
- •35.Сельскохозяйственные и лесные технологии.
- •36. Технологии легкой промышленности.
- •37. Формы движения материи. Потенциальная и кинетическая энергии, их природа и взаимопревращения.
1.Электрогенератор.Электродвигатель. Применение их технике и технологиях.
Электрогенератор – это специальное устройство, которое позволяет преобразовывать различные типы неэлектрической энергии (энергию ветра, солнца, воды или механическую энергию вращения вала двигателя) в электрическую энергию переменного тока. История электрогенераторов началась еще в первой половине XIX века. Первые прообразы генераторов работали на основе принципа электростатики, позже, когда была открыта связь между электричеством и магнетизмом, появились электромагнитные генераторы. Первые конструкции были несовершенны и имели целый ряд недостатков, не позволяющих найти им промышленное применение. Но они дали толчок в развитии этого направления физики.
Первым электрогенератором, способным вырабатывать постоянный ток, стала динамо-машина, изобретенная венгерским физиком и электротехником А. Йедликом в 1827 году. Позже динамо-машины были заменены более современными и удобными в работе электрогенераторами переменного тока. Сегодня на рынке представлено большое количество моделей самой различной мощности. Современные электрогенераторы позволяют обеспечить бесперебойной электроэнергией практически любые объекты, для которых, по каким-то причинам, недоступны другие источники энергии.
Электродвигатель – это устройство, в котором электрическая энергия преобразуется в механическую. В основе работы электродвигателей лежит принцип электромагнитной индукции. Электродвигатель включает в себя статор (неподвижную часть) и ротор (якорь, если мы имеем дело с машиной постоянного тока)(подвижную часть). При помощи электрического тока (либо постоянных магнитов) в электродвигателе возникают неподвижные и/или вращающиеся магнитные поля. Статор – это неподвижная, обычно внешняя часть электродвигателя. Функции статора зависят от типа электродвигателя: он способен как генерировать неподвижное магнитное поле и состоять из постоянных магнитов и/или электромагнитов, так и создавать вращающееся магнитное поле и состоять из обмоток, питаемых переменным током. Ротор – это подвижная, обычно расположенная внутри статора, часть электродвигателя. Благодаря взаимодействию магнитных полей ротора и статора в электродвигателе возникает вращающий момент, который приводит в движение ротор двигателя. Так происходит преобразование электрической энергии, подаваемой на обмотки двигателя, в механическую энергию вращения. Данная энергия используется с целью привода механизмов в движение.
2.Топливные элементы. Водородная энергетика.
Топливные элементы — это электрохимические устройства, которые могут иметь очень высокий коэффициент преобразования химической энергии в электрическую.
Водородная энергетика — развивающаяся отрасль энергетики, направление выработки и потребления энергии человечеством, основанное на использовании водорода в качестве средства для аккумулирования, транспортировки и потребления энергии людьми, транспортной инфраструктурой и различными производственными направлениями. Водород выбран как наиболее распространенный элемент на поверхности земли и в космосе, теплота сгорания водорода наиболее высока, а продуктом сгорания в кислороде является вода (которая вновь вводится в оборот водородной энергетики). Водородная энергетика относится к нетрадиционным видам энергетики.