Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры материалы.docx
Скачиваний:
2
Добавлен:
03.08.2019
Размер:
174.1 Кб
Скачать

Технология аргонодуговой сварки неплавящимся электродом

Дуга горит между свариваемым изделием и неплавящимся электродом (обычно из вольфрама). Электрод расположен в горелке, через сопло которой вдувается защитный газ. Присадочный материал подается в зону дуги со стороны и в электрическую цепь не включен.

Аргонная сварка может быть ручной, когда горелка и присадочный пруток находятся в руках сварщика, и автоматической, когда горелка и присадочная проволока перемещаются без непосредственного участия сварщика.

При этом способе сварки зажигание дуги, в отличие от сварки плавящимся электродом, не может быть выполнено путем касания электродом изделия по двум причинам. Во-первых, аргон обладает достаточно высоким потенциалом ионизации, поэтому ионизировать дуговой промежуток за счет искры между изделием и электродом достаточно сложно (при аргонной сварке плавящимся электродом после того, как проволока коснется изделия, в зоне дуги появляются пары железа, которые имеют потенциал ионизации в 2,5 раза ниже, чем аргона, что позволяет зажечь дугу). Во-вторых, касание изделия вольфрамовым электродом приводит к его загрязнению и интенсивному оплавлению. Поэтому при аргонной сварке неплавящимся электродом для зажигания дуги параллельно источнику питания подключается устройство, которое называется «осциллятор».

Осциллятор для зажигания дуги подает на электрод высокочастотные высоковольтные импульсы, которые ионизируют дуговой промежуток и обеспечивают зажигание дуги после включения сварочного тока. Если аргонная сварка производится на переменном токе, осциллятор после зажигания дуги переходит в режим стабилизатора и подает импульсы на дугу в момент смены полярности, чтобы предотвратить деионизацию дугового промежутка и обеспечить устойчивое горение дуги.

Область применения и преимущества аргонодуговой сварки

Основная область применения аргонодуговой сварки неплавящимся электродом – соединения из легированных сталей и цветных металлов. При малых толщинах аргонная сварка может выполняться без присадки. Способ сварки обеспечивает хорошее качество и формирование сварных швов, позволяет точно поддерживать глубину проплавления металла, что очень важно при сварке тонкого металла при одностороннем доступе к поверхности изделия. Он получил широкое распространение при сварке неповоротных стыков труб, для чего разработаны различные конструкции сварочных автоматов. В этом виде сварку иногда называют орбитальной. Сварка неплавящимся электродом – один из основных способов соединения титановых и алюминиевых сплавов.

Аргоновая сварка плавящимся электродом используется при сварке нержавеющих сталей и алюминия. Однако объем ее применения относительно невелик.

Недостатками аргонодуговой сварки являются невысокая производительность при использовании ручного варианта. Применение же автоматической сварки не всегда возможно для коротких и разноориентированных швов.

11 Дуговая сварка в среде углекислого газа.

Сущность процесса сварки в углекислом газе заключается в следующем. Поступающий в зону сварки углекислый газ защищает ее от вредного влияния атмосферы воздуха.

Сварка в среде углекислого газа — процесс высокопроизводительный. В настоящее время сварка в углекислом газе, как правило, производится постоянным током обратной полярности. Переменный ток и постоянный ток прямой полярности не применяются из-за недостаточной устойчивости процесса и неудовлетворительного качества и формы шва.

Это происходит вследствие того, что наличие в дуговом промежутке кислорода, имеющего, как и фтор, большое сродство к электрону, приводит к образованию большого количества отрицательных ионов, нарушающих нормальное условие горения дуги, питаемой переменным током и постоянным током прямой полярности.

К источникам питания дуги при сварке в струе защитных газов предъявляются некоторые дополнительные требования.

Источник питания дуги должен обеспечивать большую скорость нарастания сварочного тока при коротком замыкании и определенную его величину.

Эти условия обеспечивают генераторы с жесткой внешней характеристикой. Если величина тока и скорость его нарастания будут достаточными, то тогда выделяется много энергии в контакте между изделием и электродами. Вследствие этого металл в контакте испаряется, что создает благоприятные условия для возникновения дуги.

Если же источник питания не обеспечивает достаточно большой величины и скорости нарастания сварочного тока, то нагрев электрода в месте касания с изделием будет недостаточным (веледствие хорошего теплоотвода в изделие) для зажигания дуги. При этом электрод успеет раскалиться по всему вылету и в месте наибольшего нагрева (у контактных точек мундштука) расплавится со взрывом. Взрыв произойдет за счет интенсивного парообразования.

12 Газовая сварка: сущность, материалы, оборудование.

Газовая сварка — это сварка плавлением, при которой металл в зоне соединения нагревают до расплавления газовым пламенем. При нагреве газовым пламенем кромки свариваемых заготовок расплавляются вместе с присадочным металлом, который может дополнительно вводиться в пламя горелки. После затвердевания жидкого металла образуется сварной шов. К преимуществам газовой сварки относятся: простота способа, несложность оборудования, отсутствие источника электрической энергии . К недостаткам газовой сварки относятся: меньшая производительность, сложность механизации, большая зона нагрева и более низкие механические свойства сварных соединений, чем при дуговой сварке. Газовую сварку используют при изготовлении и ремонте изделий из тонколистовой стали толщиной 1—3 мм, сварке чугуна, алюминия, меди, латуни, наплавке твердых сплавов, исправлении дефектов литья и др. Параметры режима. В зависимости от свариваемого материала, его толщины и типа изделия выбирают следующие основные параметры режима сварки: мощность сварочного пламени, вид пламени, марку и диаметр присадочной проволоки, флюс, способ и технику сварки. Тепловую мощность сварочного пламени определяют расходом ацетилена, проходящего за один час через горелку. Газосварщик устанавливает и регулирует вид сварочного пламени на глаз. Нормальным пламенем сваривают большинство сталей. Окислительным пламенем, которое имеет голубоватый оттенок и заостренную форму ядра, используют при сварке латуни. Науглероживающее пламя, которое становится коптящим, удлиняется и имеет красноватый оттенок, используют в основном для сварки чугуна для компенсации выгорающего при сварке углерода. Перед сваркой кромки соединяемых элементов и примыкающие к ним поверхности на участке 20—40 мм (с каждой стороны) должны быть зачищены до металлического блеска от ржавчины, масла и других загрязнений металлическими или круглыми приводными щетками, иногда напильниками или наждачной бумагой. Сварочная проволока для газовой сварки и наплавки поставляется по тем же техническим условиям, что и для дуговой сварки: стальная сварочная проволока из низкоуглеродистых, легированных и высоколегированных ; сварочная проволока из алюминия и алюминиевых сплавов, сварочная проволока и прутки из меди и сплавов на медной основе.

Достоинства газовой сварки:

Сваривать можно где угодно, поскольку нет необходимости в дополнительном дорогом оборудовании и источниках энергии. При помощи газовой сварки можно сваривать металлы с различными температурами плавления

Свинец, чугун, латунь и медь лучше всего свариваются именно при помощи газовой сварки

Если правильно подобрать вид и мощность пламени, а также хорошую присадочную проволоку, можно получить очень качественные и прочные швы

Нагревание и остывание поверхностей происходит достаточно медленно.

Недостатки газовой сварки

Очень большая зона нагрева, что может способствовать повреждению близлежащих к сварке неустойчивых компонентов.

Чем толще металл, тем ниже производительность сварки (так сварка металла, толщина которого превышает пять миллиметров, абсолютно невыгодна).

При сваривании металлов внахлест использовать газовую сварку не рекомендуют, поскольку в таком случае велика вероятность напряжения в металле, что может привести к разрушению и деформациям места спайки.

При сварке используются очень опасные вещества, которые в сочетании с воздухом образуют взрывоопасные смеси (ацетилен, водород и пр.).

13 Контактная стыковая сварка: сущность, оборудование.

Точечная контактная сварка — сварочный процесс, при котором детали соединяются в одной или одновременно в нескольких точках.

При точечной сварке детали собирают внахлестку, сжимают усилием электродами, к которым подключен источник электрической энергии (например, сварочный трансформатор). Детали нагреваются при кратковременном прохождении сварочного тока Iсв до образования зоны взаимного расплавления деталей, называемой ядром. Нагрев зоны сварки сопровождается пластической деформацией металла в зоне контакта деталей (вокруг ядра), где образуется уплотняющий поясок, надежно предохраняющий жидкий металл от выплеска и от окружающего воздуха. Поэтому специальной защиты зоны сварки не требуется. После выключения тока расплавленный металл ядра быстро кристаллизуется, и образуются металлические связи между соединяемыми деталями. Таким образом, образование соединения при точечной сварке происходит с расплавлением металла.

Нагрев при точечной сварке проводят импульсами переменного тока промышленной частоты 50 Гц (реже повышенной частоты 1000 Гц), а также импульсами постоянного или униполярного тока.

По способу подвода тока к свариваемым деталям различают двустороннюю и одностороннюю сварку. В первом случае электроды подводят к каждой из деталей, а во втором — к одной из деталей. Для повышения плотности тока в точках касания деталей нижнюю деталь прижимают к медной подкладке 6, которая одновременно выполняет роль опоры.

Оборудование для контактной. сварки Контактную сварку выполняют на специальных машинах, электрическая часть которых состоит из сварочного трансформатора, прерывателя4 сварочного тока, регулятора (или переключателя) тока первичной цепи трансформатора и токоподводящих устройств, а механическая часть — из механизмов и узлов, создающих необходимое давление для сжатия свариваемых деталей. В зависимости от типа выполняемого соединения контактные машины подразделяют на стыковые, точечные и шовные, шовно-стыковые.

14 Шовная сварка, сущность, оборудование.

Шовная (роликовая) сварка – разновидность контактной сварки, при которой заготовки соединяются непрерывным или прерывистым швом, состоящим из отдельных сварных точек, в результате приложения усилия сжатия и подвода тока к вращающимся дисковым электродам (роликам).

Сущность процесса: Заготовки накладывают друг на друга и зажимают обычно между двумя дисковыми электродами усилием сжатия Fсв (P). При подаче тока металл в зоне контакта деталей по оси электродов начинает нагреваться и расплавляться. По мере движения (прокатывания) заготовок между дисковыми электродами образуются новые сварные точки, перекрывающие или не перекрывающие друг друга. Как и при точечной сварке, не требуются специальные средства защиты расплава от взаимодействия с атмосферой.

В зависимости от характера перемещения деталей и подачи сварочного тока различают следующие способы: шовной сварки: непрерывную; прерывистую и шаговую.

15 Контактная стыковая сварка, сущность, оборудование.

Стыковая сварка – разновидность контактной сварки, при которой детали соединяются по поверхности стыкуемых торцов в результате подвода тока и применения усилия сжатия.

Сущность процесса : Свариваемые детали закрепляются в зажимах-электродах и сжимаются осевым усилием Fсв (P). Левая плита обычно неподвижна. При включении сварочного трансформатора через заготовки протекает электрический ток большой силы и низкого напряжения, нагревающий их. Наибольшее количество теплоты выделяется на стыке деталей.

В зависимости от степени нагрева торцов заготовок различают технологии стыковой сварки сопротивлением и оплавлением.

При сварке сопротивлением детали вначале сжимают осевым усилием для образования плотного соприкосновения свариваемых торцов. Затем подается электрический ток, при прохождении которого стыкуемые поверхности нагреваются до пластического состояния. Далее выполняется осадка (сжатие нарастающим усилием) заготовок с образованием соединения в твердой фазе. При этом ток отключают до окончания осадки.

Сварка сопротивлением используется для соединения деталей круглого или прямоугольного сечения площадью, как правило, до 200 мм2 в зависимости от металлов. Для обеспечения равномерного нагрева торцов они должны быть точно подогнаны и предварительно очищены механическим или химическим способом.

Сварка оплавлением может осуществляться с непрерывным или прерывистым оплавлением.

При стыковой сварке непрерывным оплавлением детали постепенно сближают при включенном источнике тока. Касание торцов происходит по отдельным выступам. Поскольку площадь образующихся контактов-перемычек очень мала, то из-за высокой плотности протекающего через них тока они быстро нагреваются и расплавляются. Часть металла взрывается и в виде искр вылетает из стыка. В выбрасываемом расплаве присутствуют и загрязнения с поверхностей заготовок. Дальнейшее сближение деталей приводит к образованию и оплавлению новых контактов-перемычек. В результате этого непрерывного процесса на торцах образуется слой жидкого металла. После того, как торцы оплавятся по всей поверхности, производится осадка. Торцы быстро сближаются с большим усилием. При этом жидкий металл с оксидными пленками выдавливается из стыка наружу и при затвердевании образует грат, который обычно удаляют в горячем виде.

Для соединения заготовок с большой площадью сечения с целью уменьшения мощности оборудования применяют стыковую сварку прерывистым оплавлением. Детали при включенном токе поочередно сжимают с небольшим усилием и вновь разводят. При сжатии стыкуемые поверхности разогреваются протекающим током. При размыкании между торцами образуется электрический разряд, оплавляющий их поверхности. После нескольких повторных действий поверхности заготовок покрываются слоем жидкого металла, и выполняется осадка. Жидкий металл выдавливается из стыка, а торцы соединяются с получением сварного соединения.

16 Пайка металлов и сплавов, материалы для пайки.

Пайка – это технологический процесс получения неразъёмных соединений при помощи припоя. Для осуществления пайки припой и основной металл нагревают до температуры, при которой первый должен расплавиться, а второй находиться в твёрдом состоянии. Это основное отличие пайки от сварки. При пайке жидкий припой затекает в зазоры между соединяемыми деталями и после затвердевания даёт полный шов.

Паять можно стали любых марок, чугуны, тугоплавкие металлы и сплавы, цветные металлы и сплавы, твёрдые сплавы, а также различные их сочетания (например, сталь и твёрдый сплав - в токарных резцах на стальные стержни припаивают твёрдосплавные режущие пластинки).

Пайка при температуре до 400°С называется низкотемпературной, а при температуре выше 400°С – высокотемпературной.

2. Припои. К лёгкоплавким (мягким) припоям относятся сплавы на основе олова, свинца, цинка и других легкоплавких металлов. Они имеют небольшую прочность и применяются для получения несиловых соединений или просто для контакта двух деталей.

Для пайки легкоплавким припоем используются оловянно-свинцовые сплавы. Они обеспечивают пайку почти всех металлов и сплавов, применяемых в машиностроении. Оловянисто-свинцовые припои обозначаются сокращённо ПОС. Цифры, стоящие справа, указывают содержание олова в припое. Например, ПОС-90 означает: припой оловянно-свинцовый, содержащий 90% олова. ПОС-90 применяется для пайки внутренних швов хозяйственной посуды и медицинской аппаратуры. ПОС-50 применяется для пайки авиационных деталей. ПОС-40 и ПОС-30 рекомендуется при пайке радиаторов, электроаппаратуры, меди, латуни, железа, цинка, белой жести. Припой ПОС-18 наиболее дешев, рекомендуется для пайки меди, латуни, железа, оцинкованных листов, автотракторных деталей и изделий широкого потребления.

Для высокотемпературной пайки используют тугоплавкие (твёрдые) припои на основе меди и серебра. Данные припои исползуют для получения прочных соединений, стойких против коррозии. Температура плавления этих припоев 700...950°С. Достаточно широко используются медно-цинковые припои. Они обозначаются сокращённо ПМЦ. Цифры, стоящие справа, указывают содержание меди в припое. Их используют для пайки стальных, медных и чугунных изделий. Марки: ПМЦ-54, ПМЦ-48, ПМЦ-54.

3. Флюсы – это материалы, которые должны:

1. Улучшать условия смачивания поверхности паяемого металла и расплавленного припоя от окисления при нагреве в процессе пайки.

2. Растворять окислые плёнки, имевшиеся на поверхности паяемого металла и припоя.

Технологичный и экономически целесообразный флюс должен сохранять свойства и не менять своего состава от нагревания при пайке, не вызывать сильной коррозии паяного соединения, иметь температуру плавления обязательно ниже температуры плавления припоя, не выделять при нагреве ядовитых газов, химически не взаимодействовать с припоем и образовывать с ним два несмешивающихся слоя, иметь возможно низкую стоимость. Для низкотемпературной пайки медных проводников, покрытых золотом или серебром, применяют канифольные и стеарино-парафиновые (бескислотные) флюсы; для пайки стали, меди, никеля используют пасты на основе вазелина, содержащие 10—15 % хлористого цинка (ZnС12) или хлористого аммония (NН4С1) — активированные флюсы; для легированных, коррозионно-стойких, жаропрочных сталей 25-30 %-ные растворы ZnС12.

18 Газотермическое напыление металлоконструкций.

Газотермическое напыление Этот вид напыления характеризуется своей простотой, технологической доступностью и компактностью. Газотермическое напыление дает стойкие антикорозионные, жаростойкие, электроизоляционные, износостойкие покрытия. Существуют дуговые и газоплазменные способы нанесения покрытий. Дуговые способы покрытия энергетически выгодны, однако пригодны лишь для распыления металлических стержней. Для порошковых материалов приемлем только газопламенный способ. Перед началом напыления поверхность деталей необходимо очищать механическим, а если потребуется, то и химическим путем. Наряду с газовыми проволочными аппаратами широко применяют установки для напыления покрытий из порошковых материалов. Все установки этого типа состоят из питательного бачка для подачи порошка и распылительной горелки (пистолета).

19 Электрошлаковая сварка, сущность, оборудование и приспособления.

Электрошлаковая сварка (ЭШС) — вид электрошлакового процесса, сварочная технология, использующая для нагрева зоны плавления тепло шлаковой ванны, нагреваемой электрическим током.

Сущность способа: Расплавленные флюсы образуют шлаки, которые являются проводниками электрического тока. При этом в объеме расплавленного шлака при протекании сварочного тока выделяется теплота. Этот принцип и лежит в основе электрошлаковой сварки. Электрод и основной металл связаны электрически через расплавленный шлак (шлаковая ванна). Выделяющаяся в шлаковой ванне теплота нагревает его выше температуры плавления основного и электродного металлов. В результате металл электрода и кромки основного металла оплавляются и ввиду большей плотности металла, чем шлака, стекают на дно расплава, образуя ванну расплавленного металла (металлическую ванну).

Электродный металл в виде отдельных капель, проходя через жидкий шлак, взаимодействует с ним, изменяя при этом свой состав. Шлаковая ванна, находясь над поверхностью расплавленного металла, препятствует его взаимодействию с воздухом. При правильно подобранной скорости подачи электрода зазор между торцом электрода и поверхностью металлической ванны остается постоянным.

Свариваемый металл, шлаковая и металлическая ванны удерживаются от вытекания обычно специальными формирующими устройствами подвижными или неподвижными медными ползунами, охлаждаемыми водой , или остающимися пластинами. Верхняя кромка ползуна располагается несколько выше зеркала шлаковой ванны. Кристаллизующийся в нижней части металлической ванны расплавленный металл образует шов. Шлаковая ванна, находясь над поверхностью металлической ванны, соприкасаясь с охлаждаемыми ползунами, образует на них тонкую шлаковую корку, исключая тем самым непосредственный контакт расплавленного металла с поверхностью охлаждаемого ползуна и предупреждая образование в металле шва кристаллизационных трещин.

20 Электронно-лучевая сварка. Сущность, оборудование и приспособления.

Электронно-лучевая сварка - сварка с высокой концентрацией теплоты, отличной защитой. Сущность процесса состоит в использовании кинетической энергии потока электронов, движущихся с высокими скоростями в вакууме. Для уменьшения потери кинетической энергии электронов за счет соударения с молекулами газов воздуха, а также для химической и тепловой защиты катода в электронной пушке создают вакуум порядка 10~4-10~6 мм рт. ст.

Достоинства электронно-лучевой сварки

1) Высокая концентрация ввода теплоты в изделие, которая выделяется не только на поверхности изделия, но и на некоторой глубине в объеме основного металла.

2) Малое количество вводимой теплоты. Как правило, для получения равной глубины проплавления при электронно-лучевой сварке требуется вводить теплоты в 4-5 раз меньше, чем при дуговой. В результате резко снижаются коробления изделия.

3) Отсутствие насыщения расплавленного и нагретого металла газами. Наоборот, в целом ряде случаев наблюдается Дегазация металла шва и повышение его пластических свойств. В результате достигается высокое качество сварных соединений на химически активных металлах и сплавах, таких как ниобий, Цирконий, титан, молибден и др. Хорошее качество электроннолучевой сварки достигается также на низкоуглеродистых, коррозионно-стойких сталях, меди и медных никелевых, алюминиевых сплавах.

Недостатки электронно-лучевой сварки: возможность образования несплавлений и полостей в корне шва на металлах с большой теплопроводностью и швах с большим отношением глубины к ширине; для создания вакуума в рабочей камере после загрузки изделий требуется длительное время.

21 Лазерная сварка. Сущность, оборудование и приспособления.

При лазерной сварке нагрев и плавление металла осуществляется лазерным лучом оптического квантового генератора.

Сущность способа. Плазма - ионизированный газ, содержащий электрически заряженные частицы и способный проводить ток. Ионизация газа происходит при его нагреве. Степень ионизации тем выше, чем выше температура газа. В центральной части сварочной дуги газ нагрет до температур 5000-30000° С, имеет высокую электропроводность, ярко светится и представляет собой типичную плазму. Плазменную струю, используемую для сварки и резки, получают в специальных плазматронах, в которых нагревание газа и его ионизация осуществляются дуговым разрядом в специальных камерах.

Вдуваемый в камеру газ, сжимая столб дуги в канале сопла плазматрона и охлаждая его поверхностные слои, повышает температуру столба. В результате струя проходящего газа, нагреваясь до высоких температур, ионизируется и приобретает свойства плазмы. Увеличение при нагреве объема газа в 50-100 и более раз приводит к истечению плазмы со сверхзвуковыми скоростями. Плазменная струя легко расплавляет любой металл.

Дуговую плазменную струю для сварки и резки получают по двум основным схемам. При плазменной струе прямого действия изделие включено в сварочную цепь дуги, активные пятна которой располагаются на вольфрамовом электроде и изделии. При плазменной струе косвенного действия активные пятна дуги находятся на вольфрамовом электроде и внутренней или боковой поверхности сопла. Плазмообразующий газ может служить также и защитой расплавленного металла от воздуха. В некоторых случаях для защиты расплавленного металла используют подачу отдельной струи специального, более дешевого защитного газа. Газ, перемещающийся вдоль стенок сопла, менее ионизирован и имеет пониженную температуру. Благодаря этому предупреждается расплавление сопла. Однако большинство плазменных горелок имеет дополнительное водяное охлаждение.

Дуговая плазменная струя - интенсивный источник теплоты с широким диапазоном технологических свойств. Ее можно использовать для нагрева, сварки или резки как электропроводных металлов, так и неэлектропроводных материалов, таких как стекло, керамика и др. (плазменная струя косвенного действия). Тепловая эффективность дуговой плазменной струи зависит от величины сварочного тока и напряжения, состава, расхода и скорости истечения плазмообразующего газа, расстояния от сопла до поверхности изделия, скорости перемещения горелки (скорости сварки или резки) и т. д. Геометрическая форма струи может быть также различной (квадратной, круглой и т. д.) и определяться формой выходного отверстий сопла.

22 Сварка трением, сущность.

Сварка трением – разновидность сварки, при которой механическая энергия, подводимая к одной из свариваемых деталей, преобразуется в тепловую; при этом генерирование теплоты происходит непосредственно в месте будущего соединения.

Сварка трением использует нагрев металла при трении. При сварке трением в основном сваривают детали круглого сечения. Детали закрепляются в зажимах машины для сварки трением, прижимаются друг к другу под усилием и приводятся во вращение с относительной скоростью 700— 6000 об/мин. Вращение может быть как одной детали так и двух сразу. Торцы стержней, при сварке трением, быстро разогреваются, после чего следует быстрая осадка.

Способ позволяет сваривать разнородные металлы (алюминий с медью, алюминий со сталью, медь со сталью и другие). Ширина зоны влияния сварного соединения не более 2-3 мм. Особенно эффективна сварка заготовок металлорежущего инструмента сверл, метчиков из углеродистой и быстрорежущей стали.

Достоинства инерционной сварки трением: високая производительность; высокие энергетические показатели процесса; высокое качество сварного соединения; стабильность качества сварных соединений; независимость качества сварных соединений от чистоты их поверхности; возможность сварки металлов и сплавов в различных сочетаниях; гигиеничность процесса; простота механизации и автоматизации; не требуется большой мощности; быстрота сварки, меньшая зона разогрева, вследствие точного дозирования энергии.

23 Ультрозвуковая сварка, сущность.

Сущность процесса состоит в том, что к свариваемым деталям подводятся механические колебания высокой частоты, создаваемые магнитострикционными преобразователями с частотой 15 — 20 кгц.

Механические колебания разрушают окисные пленки на поверхности деталей. Одновременно производится сжатие деталей с заданным усилием. В результате одновременного действия колебаний и сжатия в контакте происходит некоторое повышение температуры, способствующее пластической деформации микровыступов и взаимному сцеплению соединяемых деталей.

Сварка обычно производится без нагрева от постороннего источника.

Основными условиями образования неразъемного соединения с помощью ультразвука являются: удаление окисных пленок на внутренних поверхностях соединения и сближение контактирующих поверхностей соединяемых деталей на расстояние действия межатомных сил.

Обработка металлов резаньем.

1 Движения при обработке материалов резаньем.

Способ резания скалыванием применяется преимущественно для обработки твердых и хрупких материалов, например, при бурении и добыче угля, горных пород и сланцев. Угол заострения такого инструмента находится в пределах 90º-120º. Под действием силы Р напряжения развиваются непосредственно в зоне кромки, имеющей радиус округления ρ ≥1 мм.

Способ обработки пуансоном преимущественно применяется при вырубке заготовок (деталей) из листового материала. Угол заострения такого инструмента находится в пределах 80º-90º, а напряжения распространяются на переднюю и заднюю поверхности, связанные радиусом округления ρ ≥0.3 мм.

Способ обработки резцом со снятием стружки преимущественно используется для обработки металлических материалов. В этом случае нагрузка на поверхности резца определяется благодаря силе резания Р и углу заострения β≤75º. Радиус округления ρ ≥ 0,1 мм.

При обработке лезвием преимущественно мягких материалов вязких и вязкоупругих нагрузка воспринимается непосредственно на острие лезвия, которое имеет угол заострения в пределах 60о-10о, а радиус округления кромки ρ ≥ 0.01мм.

2 Элементы режимов резанья, геометрия срезаемого слоя, шероховатость поверхности.

Глубиной резания называют величину снимаемого слоя металла между обрабатываемой и обработанной поверхностями, измеряемую перпендикулярно последней и снимаемую за один проход режущего инструмента. Глубина резания измеряется в миллиметрах.

Подача — величина перемещения режущего лезвия резца в направлении вспомогательного движения за один оборот обрабатываемой заготовки (об/мм). При обтачивании различают подачу продольную Sпp (по направлению оси центров станка), поперечную Sп (перпендикулярно к оси центров станка) и наклонную Sп (под углом к оси центров станка, например, при обтачивании конической поверхности).

Скорость резания — путь перемещения обрабатываемой поверхности заготовки относительно режущего лезвия резца в единицу времени. Скорость резания обозначается буквой V и измеряется в м/мин.

Ширина срезаемого слоя b — расстояние между Обрабатываемой и обработанной поверхностями, измеренное по поверхности резания. Она равна проекции рабочей длины режущего лезвия резца на основную плоскость.

Толщина срезаемого слоя а — расстояние, измеренное в направлении, перпендикулярном к ширине срезаемого слоя, между двумя последовательными положениями главного режущего лезвия за один оборот заготовки.

4 классификация металлорежущих элементов и резцов

Резец представляет собой наиболее часто используемый инструмент в отраслях, связанных с металлообработкой. Резцы предназначаются для обрабатывания плоскостей, предметов вращения, а также при разрезании материала и нарезании резьбы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]