
- •Твердые сплавы
- •Виды термической обработки металлов.
- •Стали для штампов холодного деформирования.
- •Влияние примесей.
- •2. Скрытые примеси - газы (азот, кислород, водород) – попадают в сталь при выплавке.
- •Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии (сплавы твердые растворы с неограниченной растворимостью)
- •5. Количественный структурно-фазовый анализ сплава.
- •Назначение легирующих элементов.
- •Распределение легирующих элементов в стали.
- •4. Случайные примеси.
- •Углеродистые инструментальные стали (гост 1435).
- •Физическая природа деформации металлов.
- •Влияние пластической деформации на структуру и свойства металла: наклеп
- •Металлы, особенности атомно-кристаллического строения
- •Понятие об изотропии и анизотропии
- •Высокопрочные стали.
- •Использование
- •Производство
- •Улучшаемые стали.
- •Пружинные стали.
- •Классификация сталей
- •Влияние нагрева на структуру и свойства деформированного металла: возврат и рекристаллизация
- •Механизм и закономерности кристаллизации металлов.
- •Закалка
- •Ковкий чугун
- •Стали для штампов горячего деформирования
- •Превращение перлита в аустетит
- •Превращение аустенита в мартенсит при высоких скоростях охлаждения
- •Влияние примесей.
- •2. Скрытые примеси - газы (азот, кислород, водород) – попадают в сталь при выплавке.
- •3. Специальные примеси – специально вводятся в сталь для получения заданных свойств. Примеси называются легирующими элементами, а стали - легированные сталями.
- •Деформируемые сплавы, упрочняемые термической обработкой.
- •Латуни.
- •Диаграмма состояния железо – графит.
- •Отбеленные и другие чугуны
- •Конструкционные стали.
- •Диаграмма состояния сплавов с отсутствием растворимости компонентов в компонентов в твердом состоянии (механические смеси)
- •Точеные дефекты
- •Диаграмма состояния сплавов с отсутствием растворимости компонентов в компонентов в твердом состоянии (механические смеси)
- •Быстрорежущие стали
- •Превращение перлита в аустетит
- •Превращение аустенита в мартенсит при высоких скоростях охлаждения
- •Стали для измерительных инструментов
- •Износостойкие стали.
- •Влияние пластической деформации на структуру и свойства металла: наклеп
- •Алюминий и его сплавы
- •Алюминиевые сплавы.
- •Влияние примесей.
- •2. Скрытые примеси - газы (азот, кислород, водород) – попадают в сталь при выплавке.
- •3. Специальные примеси – специально вводятся в сталь для получения заданных свойств. Примеси называются легирующими элементами, а стали - легированные сталями.
- •Аллотропия или полиморфные превращения.
- •Магнитные превращения
- •Структуры железоуглеродистых сплавов
- •Назначение легирующих элементов.
- •Распределение легирующих элементов в стали.
- •4. Случайные примеси.
- •Цементуемые стали.
- •Цементуемые стали.
- •Влияние нагрева на структуру и свойства деформированного металла: возврат и рекристаллизация
Понятие об изотропии и анизотропии
Свойства тела зависят от природы атомов, из которых оно состоит, и от силы взаимодействия между этими атомами. Силы взаимодействия между атомами в значительной степени определяются расстояниями между ними. В аморфных телах с хаотическим располохением атомов в пространстве расстояния между атомами в различных направлениях равны, следовательно, свойства будут одинаковые, то есть аморфные тела изотропны
В кристаллических телах атомы правильно располагаются в пространстве, причем по разным направлениям расстояния между атомами неодинаковы, что предопределяет существенные различия в силах взаимодействия между ними и, в конечном результате, разные свойства. Зависимость свойств от направления называется анизотропией
Чтобы понять явление анизотропии необходимо выделить кристаллографические плоскости и кристаллографические направления в кристалле.
Плоскость, проходящая через узлы кристаллической решетки, называется кристаллографической плоскостью.
Прямая, проходящая через узлы кристаллической решетки, называется кристаллографическим направлением.
Для обозначения кристаллографических плоскостей и направлений пользуются индексами Миллера. Чтобы установить индексы Миллера, элементарную ячейку вписывают в пространственную систему координат (оси X,Y, Z – кристаллографические оси). За единицу измерения принимается период решетки.
Рис.1.3. Примеры обозначения кристаллографических плоскостей (а) и кристаллографических направлений (б)
Для определения индексов кристаллографической кристаллографической плоскости необходимо:
установить координаты точек пересечения плоскости с осями координат в единицах периода решетки;
взять обратные значения этих величин;
привести их к наименьшему целому кратному, каждому из полученных чисел.
Полученные значения простых целых чисел, не имеющие общего множителя, являются индексами Миллера для плоскости, указываются в круглых скобках. Примеры обозначения кристаллографических плоскостей на рис. 1.3 а.
Другими словами, индекс по оси показывает на сколько частей плоскость делит осевую единицу по данной оси. Плоскости,параллельные оси, имеют по ней индекс 0 (110)
Ориентация прямой определяется координатами двух точек. Для определения индексов кристаллографического направления необходимо:
одну точку направления совместить с началом координат;
установить координаты любой другой точки, лежащей на прямой, в единицах периода решетки
привести отношение этих координат к отношению трех наименьших целыж чисел.
Индексы кристаллографических направлений указываются в квадратных скобкаж [111]
В кубической решетке индексы направления, перпендикулярного плоскости (hkl) имеют теже индексы [hkl].
Высокопрочные стали.
Мартенситно-стареющие стали (03Н18К9М5Т, 04Х11Н9М2Д2ТЮ) превосходят по конструкционной прочности и технологичности среднеуглеродистые легированные стали. Они обладают малой чувствительностью к надрезам, высоким сопротивлением хрупкому разрушению и низким порогом хладоломкости при прочности около 2000 МПа.
Мартенситно-стареющие стали представляют собой безуглеродистые сплавы железа с никелем (8..25 %), дополнительно легированные кобальтом, молибденом, титаном, алюминием, хромом и другими элементами. Благодаря высокому содержанию никеля, кобальта и малой концентрации углерода в результате закалки в воде или на воздухе фиксируется высокопластичный, но низкопрочный железоникелевый мартенсит, пересыщенный легирующими элементами. Основное упрочнение происходит в процессе старения при температуре 450…550 oС за счет выделения из мартенситной матрицы когерентно с ней связанных мелкодисперсных фаз. Мартенситно-стареющие стали обладают высокой конструкционной прочностью в интервале температур от криогенных до 500 oС и рекомендуются для изготовления корпусов ракетных двигателей, стволов артиллерийского и стрелкового оружия, корпусов подводных лодок, батискафов, высоконагруженных дисков турбомашин, зубчатых колес, шпинделей, червяков и т.д.
ТРИП-Сталь (англ. TRIP от Transformation-Induced Plasticity) — метастабильная высокопрочная аустенитная сталь с высокой пластичностью. В отечественной литературе иногда именуется ПНП – сталью (от: Пластичность, Наведенная Превращением).