
- •Ю.Ю. Герасимов, в.К. Хлюстов
- •Математические методы и модели в расчетах на эвм: применение в лесоуправлении и экологии
- •Часть 1. Вариационная статистика
- •Глава 1.
- •1.1. Общие положения
- •1.2. Основные понятия статистики
- •1.3. Основы теории вероятностей
- •1.3.1. Понятие случайной величины
- •1.3.2. Классическое и статистическое определения вероятности события
- •1.3.3. Основные теоремы теории вероятностей
- •1.4. Контрольные вопросы и задания
- •Глава 2.
- •2.1. Постановка задачи
- •2.2. Классификация и группировка вариант
- •2.3. Графическое представление вариационных рядов
- •2.4.1. Показатели центральной тенденции
- •2.4.2. Показатели вариации
- •2.4.3. Достоверность статистических показателей
- •2.4.4. Показатели скошенности и крутизны
- •2.5. Доверительный интервал
- •2.6. Контрольные вопросы и задания
- •Глава 3.
- •3.1. Постановка задачи
- •3.2. Нормальное распределение
- •3.3. Логнормальное распределение
- •3.4.2. Бета-распределение
- •3.5. Распределение Пуассона
- •3.6. Семейство кривых распределения Джонсона
- •3.7. Семейство кривых Пирсона
- •Контрольные вопросы и задания
- •Глава 4.
- •4.1. Постановка задачи
- •4.3. Сравнение эмпирического распределения с теоретическим (критерий "хи-квадрат")
- •4.5. Сравнение дисперсий двух эмпирических совокупностей
- •4.6. Сравнение частот взвешенных рядов по критерию
- •4.7. Использование пакетов прикладных программ
- •4.8. Контрольные вопросы и задания
- •Глава 5.
- •5.1. Постановка задачи
- •5.2. Однофакторный комплекс
- •5.3. Двухфакторный комплекс
- •5.4. Использование ms Excel для проведения дисперсионного анализа
- •5.4.1. Однофакторный дисперсионный анализ
- •5.4.2. Двухфакторный дисперсионный анализ без повторения
- •5.5. Контрольные вопросы и задания
- •Глава 6.
- •6.1. Постановка задачи
- •6.2. Коэффициент корреляции
- •6.3. Корреляционное отношение
- •6.4. Схема полного корреляционного анализа
- •6.5. Использование пакетов прикладных программ Вычисление коэффициента корреляции с использованием ms Excel
- •Контрольные вопросы и задания
- •Глава 7.
- •7.1. Постановка задачи
- •7.2. Статистический анализ одномерных моделей
- •Уравнение прямой линии
- •Уравнение гиперболы
- •Уравнение показательной кривой
- •Окончательный выбор типа уравнения регрессии
- •7.4. Множественная регрессия
- •7.5. Применение ms Excel для расчета регрессии
- •Часть 2. Исследование операций
- •Глава 8.
- •8.1. Общие положения
- •8.2. Основные понятия системного анализа
- •8.3. Основные понятия исследования операций
- •8.4. Постановка задач принятия оптимальных решений
- •8.5. Контрольные вопросы и задания
- •Глава 9.
- •9.1. Постановка задачи
- •9.2. Графическое решение задачи линейного программирования
- •9.3. Задача линейного программирования в стандартной форме
- •Преобразования неравенств
- •Преобразование неограниченных по знаку переменных
- •2.4. Основы симплекс - метода линейного программирования
- •9.5. Метод искусственных переменных
- •9.6. Анализ чувствительности в линейном программировании
- •9.7. Решение задач линейного программирования на эвм
- •9.8. Контрольные вопросы и задания
- •Глава 10.
- •10.1. Постановка задачи
- •10.2. Метод ветвей и границ
- •10.3. Рекомендации по формулировке и решению задач цп
- •10.4. Задачи оптимизации раскроя
- •XA 0, xB 0, k 0 - целые.
- •XA 0, xB 0, k 0 - целые.
- •10.5. Постановка задачи дискретного программирования
- •Решение задач целочисленного и дискретного программирования на эвм
- •10.7. Контрольные вопросы и задания
- •Глава 11.
- •11.1. Общие понятия
- •11.2. Практические рекомендации при постановке задач динамического программирования
- •11.3. Оптимальное распределение ресурсов
- •11.4. Оптимальное управление запасами
- •11.5. Оптимальная политика замены оборудования
- •11.6. Контрольные вопросы и задания
- •Глава 12.
- •12.1. Постановка задачи
- •12.2. Применение стохастического программирования
- •12.3. Метод статистического моделирования
- •12.4. Контрольные вопросы и задания
- •Глава 13.
- •13.1. Постановка задач нелинейного программирования
- •13.2. Безусловная однопараметрическая оптимизация
- •13.2.1. Методы исключения интервалов
- •13.2.2. Методы полиномиальной аппроксимации
- •13.2.3. Методы с использованием производных
- •13.2.4. Сравнение методов безусловной однопараметрической оптимизации
- •13.3. Безусловная многопараметрическая оптимизация
- •13.3.1. Постановка задачи
- •13.3.2. Методы прямого поиска
- •13.3.3. Градиентные методы
- •13.4. Нелинейная условная оптимизация
- •13.4.1. Постановка задач условной нелинейной оптимизации
- •13.4.2. Методы штрафных функций
- •13.4.3. Методы прямого поиска
- •13.4.4. Методы линеаризации
- •13.5. Решение задач нелинейной оптимизации на эвм
- •13.6. Контрольные вопросы и задания
- •Приложение 1 Значения t - распределения Стьюдента при доверительной вероятности р и числе степеней свободы k
- •Плотность вероятности нормального распределения
- •Приложение 3 Значения χ2 при доверительной вероятности р и числе степеней свободы k
- •Продолжение приложения 3
- •Значения -функции
- •Приложение 5 Значения - в распределении Джонсона
- •Продолжение приложения 5
- •Продолжение приложения 5
- •Продолжение приложения 5
- •Приложение 6
- •Продолжение приложения 6
- •Продолжение приложения 6
- •Продолжение приложения 6
- •Приложение 7
- •Продолжение приложения 7
- •Продолжение приложения 7
- •Продолжение приложения 7
Глава 10.
Целочисленное И ДИНАМИЧЕСКОЕ программирование
10.1. Постановка задачи
Под задачей целочисленного программирования (ЦП) понимается задача, в которой все или некоторые переменные должны принимать целые значения. В том случае, когда ограничения и целевая функция задачи представляют собой линейные зависимости, задачу называют целочисленной задачей линейного программирования. В противном случае, когда хотя бы одна зависимость будет нелинейной, это будет целочисленной задачей нелинейного программирования.
Особый интерес к задачам ЦП вызван тем, что во многих практических задачах необходимо находить целочисленное решение ввиду дискретности ряда значений искомых переменных. В сфере лесного комплекса к их числу относятся следующие задачи:
задачи оптимизации раскроя;
оптимальное проектирование лесных машин и оборудования;
оптимизации системы сервиса и технического обслуживания машинно-тракторного парка;
и т.д.
Как уже отмечалось, часто задачу ЦП решают без учета условий целочисленности переменных, а затем округляют полученное решение с избытком или недостатком. Это не гарантирует получение оптимального целочисленного решения задачи. Поэтому для нахождения оптимального решения целочисленных задач применяют специальные методы, в которых учитывается, что число возможных решений любой целочисленной задачи является конечным. Следовательно, можно рассмотреть все возможные сочетания целочисленных переменных и проверить, удовлетворяют ли они ограничениям, и из числа удовлетворяющих ограничениям выбрать наилучшее с точки зрения целевой функции. Такой метод называют методом полного перебора. Его трудоемкость с ростом числа переменных и расширением области граничных условий значительно возрастает. Поэтому для реальных задач он неприменим.
На практике для решения реальных задач следует использовать методы, в которых все возможные альтернативы не рассматриваются. Наиболее распространенным является метод ветвей и границ.
10.2. Метод ветвей и границ
Алгоритм метода ветвей и границ представляет собой эффективную процедуру перебора всех целочисленных допустимых решений.
Шаг 1. Решаем сформулированную задачу как задачу ЛП (обозначим ЛП-1), рассматривая все ее переменные как непрерывные. Пусть W1 - оптимальное значение ее целевой функции. Допустим, в оптимальном решении ЛП-1 некоторые целочисленные переменные принимают дробные значения. Тогда оптимальное решение исходной задачи не совпадает с оптимальным решением ЛП-1. В этом случае W1 - верхняя граница оптимального значения W исходной задачи.
В решенном нами примере 9.1 линейного программирования “Оптимизация размещения побочного производства лесничества” верхняя граница соответствует 34 тыс. руб. при x1=3.6 и x2=6.4. Очевидно, что переменные x1 (число откармливаемых бычков) и x2 (количество выращиваемых партий продукта растениеводства) должны быть целочисленны.
Шаг 2. Производим ветвление по одной из целочисленных переменных, имеющих дробное значение в оптимальном решении ЛП-1. Выбор переменной, по которой производим ветвление, осуществляется по ряду правил:
выбор целочисленной переменной, значение которой в оптимальном решении ЛП-1 имеет наибольшее дробное значение;
расстановка приоритетов и ветвление по переменным с наибольшим приоритетом (данная переменная представляет важное решение, ее коэффициент стоимости или прибыли в целевой функции существенно превосходит остальные и т.д.);
Произвольные правила выбора (например, переменную с наименьшим порядковым номером).
В рассматриваемой целочисленной версии примера 9.1 в качестве переменной, по которой будет вестись ветвление, следует рассматривать x1, т.к. коэффициент стоимости при этой переменной максимален.
Шаг 3. Пусть ветвление происходит по xi, дробное значение которой в ЛП-1 равно i. Далее рассматриваются уже две новые задачи ЛП-2 и ЛП-3, которые образуются путем введения двух дополнительных ограничений xii , xi i, где i - наибольшее целое, не превосходящее i, i - наименьшее целое, большее i. Допустим, оптимальные значения ЛП-2 и ЛП-3 содержат дробные значения целочисленных переменных и поэтому не являются допустимыми.
Для рассматриваемого примера 1=3,6, 1=3, 1=4.
Шаг 4. Производим ветвление в вершине 2 или 3, вводя новое ограничение. Выбор вершины (задачи ЛП) для дальнейшего ветвления осуществляется с помощью специальных правил:
использование наибольшего оптимального значения целевой функции;
“последним пришел - первым вышел”.
Шаг 5. Процесс ветвления и решения задач ЛП продолжаем до получения целочисленного решения одной из задач ЛП. Значение W в полученной точке представляет собой нижнюю границу оптимального значения ЦФ исходной задачи ЦП. На этом этапе все вершины (задачи ЛП), для которых оптимальное значение W не превосходит полученной нижней границы (“прозондированные” вершины). Вершина является прозондированной в следующих случаях:
оптимальное решение, соответствующее данной вершине, целочисленно;
задача ЛП не имеет допускаемого решения;
оптимальное значение W не превосходит текущей нижней границе.
Ветвление происходит до тех пор, пока остается хотя бы одна непрозондированная вершина. Прозондированная вершина с наилучшим W дает оптимальное решение исходной задачи ЦП.
Процесс ветвления и решения рассматриваемой задачи представлен на рис. 10.1. Оптимальное решение - W=32,5 млн. руб.; x1=4; x2=5.
-
ЛП-1
W1=34 тыс.руб.
x1=3,6, x2=6,4,
1=3,6, 1=3, 1=4.
x11
x11
ЛП-2
W1=32,5 тыс.руб.
x1=3, x2=7.
Оптимальное решение
ЛП-3
W1=33.3 тыс.руб.
x1=4, x2=5,33,
3=5,33, 3=5, 3=6.
x23
x23
ЛП-4
W1=33,13 тыс.руб.
x1=4,125, x2=5,
1=4,125, 1=4, 1=5.
ЛП-5
Допустимое решение отсутствует
x14
x14
ЛП-6
W1=32,5 тыс.руб.
x1=4, x2=5.
Оптимальное решение
ЛП-7
W1=25 тыс.руб.
x1=5, x2=0.
Рис. 10.1. Процесс ветвления для примера 9.1 в целочисленной постановке методом ветвей и границ