
- •Ю.Ю. Герасимов, в.К. Хлюстов
- •Математические методы и модели в расчетах на эвм: применение в лесоуправлении и экологии
- •Часть 1. Вариационная статистика
- •Глава 1.
- •1.1. Общие положения
- •1.2. Основные понятия статистики
- •1.3. Основы теории вероятностей
- •1.3.1. Понятие случайной величины
- •1.3.2. Классическое и статистическое определения вероятности события
- •1.3.3. Основные теоремы теории вероятностей
- •1.4. Контрольные вопросы и задания
- •Глава 2.
- •2.1. Постановка задачи
- •2.2. Классификация и группировка вариант
- •2.3. Графическое представление вариационных рядов
- •2.4.1. Показатели центральной тенденции
- •2.4.2. Показатели вариации
- •2.4.3. Достоверность статистических показателей
- •2.4.4. Показатели скошенности и крутизны
- •2.5. Доверительный интервал
- •2.6. Контрольные вопросы и задания
- •Глава 3.
- •3.1. Постановка задачи
- •3.2. Нормальное распределение
- •3.3. Логнормальное распределение
- •3.4.2. Бета-распределение
- •3.5. Распределение Пуассона
- •3.6. Семейство кривых распределения Джонсона
- •3.7. Семейство кривых Пирсона
- •Контрольные вопросы и задания
- •Глава 4.
- •4.1. Постановка задачи
- •4.3. Сравнение эмпирического распределения с теоретическим (критерий "хи-квадрат")
- •4.5. Сравнение дисперсий двух эмпирических совокупностей
- •4.6. Сравнение частот взвешенных рядов по критерию
- •4.7. Использование пакетов прикладных программ
- •4.8. Контрольные вопросы и задания
- •Глава 5.
- •5.1. Постановка задачи
- •5.2. Однофакторный комплекс
- •5.3. Двухфакторный комплекс
- •5.4. Использование ms Excel для проведения дисперсионного анализа
- •5.4.1. Однофакторный дисперсионный анализ
- •5.4.2. Двухфакторный дисперсионный анализ без повторения
- •5.5. Контрольные вопросы и задания
- •Глава 6.
- •6.1. Постановка задачи
- •6.2. Коэффициент корреляции
- •6.3. Корреляционное отношение
- •6.4. Схема полного корреляционного анализа
- •6.5. Использование пакетов прикладных программ Вычисление коэффициента корреляции с использованием ms Excel
- •Контрольные вопросы и задания
- •Глава 7.
- •7.1. Постановка задачи
- •7.2. Статистический анализ одномерных моделей
- •Уравнение прямой линии
- •Уравнение гиперболы
- •Уравнение показательной кривой
- •Окончательный выбор типа уравнения регрессии
- •7.4. Множественная регрессия
- •7.5. Применение ms Excel для расчета регрессии
- •Часть 2. Исследование операций
- •Глава 8.
- •8.1. Общие положения
- •8.2. Основные понятия системного анализа
- •8.3. Основные понятия исследования операций
- •8.4. Постановка задач принятия оптимальных решений
- •8.5. Контрольные вопросы и задания
- •Глава 9.
- •9.1. Постановка задачи
- •9.2. Графическое решение задачи линейного программирования
- •9.3. Задача линейного программирования в стандартной форме
- •Преобразования неравенств
- •Преобразование неограниченных по знаку переменных
- •2.4. Основы симплекс - метода линейного программирования
- •9.5. Метод искусственных переменных
- •9.6. Анализ чувствительности в линейном программировании
- •9.7. Решение задач линейного программирования на эвм
- •9.8. Контрольные вопросы и задания
- •Глава 10.
- •10.1. Постановка задачи
- •10.2. Метод ветвей и границ
- •10.3. Рекомендации по формулировке и решению задач цп
- •10.4. Задачи оптимизации раскроя
- •XA 0, xB 0, k 0 - целые.
- •XA 0, xB 0, k 0 - целые.
- •10.5. Постановка задачи дискретного программирования
- •Решение задач целочисленного и дискретного программирования на эвм
- •10.7. Контрольные вопросы и задания
- •Глава 11.
- •11.1. Общие понятия
- •11.2. Практические рекомендации при постановке задач динамического программирования
- •11.3. Оптимальное распределение ресурсов
- •11.4. Оптимальное управление запасами
- •11.5. Оптимальная политика замены оборудования
- •11.6. Контрольные вопросы и задания
- •Глава 12.
- •12.1. Постановка задачи
- •12.2. Применение стохастического программирования
- •12.3. Метод статистического моделирования
- •12.4. Контрольные вопросы и задания
- •Глава 13.
- •13.1. Постановка задач нелинейного программирования
- •13.2. Безусловная однопараметрическая оптимизация
- •13.2.1. Методы исключения интервалов
- •13.2.2. Методы полиномиальной аппроксимации
- •13.2.3. Методы с использованием производных
- •13.2.4. Сравнение методов безусловной однопараметрической оптимизации
- •13.3. Безусловная многопараметрическая оптимизация
- •13.3.1. Постановка задачи
- •13.3.2. Методы прямого поиска
- •13.3.3. Градиентные методы
- •13.4. Нелинейная условная оптимизация
- •13.4.1. Постановка задач условной нелинейной оптимизации
- •13.4.2. Методы штрафных функций
- •13.4.3. Методы прямого поиска
- •13.4.4. Методы линеаризации
- •13.5. Решение задач нелинейной оптимизации на эвм
- •13.6. Контрольные вопросы и задания
- •Приложение 1 Значения t - распределения Стьюдента при доверительной вероятности р и числе степеней свободы k
- •Плотность вероятности нормального распределения
- •Приложение 3 Значения χ2 при доверительной вероятности р и числе степеней свободы k
- •Продолжение приложения 3
- •Значения -функции
- •Приложение 5 Значения - в распределении Джонсона
- •Продолжение приложения 5
- •Продолжение приложения 5
- •Продолжение приложения 5
- •Приложение 6
- •Продолжение приложения 6
- •Продолжение приложения 6
- •Продолжение приложения 6
- •Приложение 7
- •Продолжение приложения 7
- •Продолжение приложения 7
- •Продолжение приложения 7
9.5. Метод искусственных переменных
Для получения системы в каноническом виде, обладающей допустимым базисным решением, существует специальный метод. Сначала задача ЛП приводится к стандартной форме, в которой все переменные неотрицательные. Затем для каждого ограничения проверяется существование соответствующей базисной переменной. Если ее нет, то вводится новая искусственная переменная, играющая роль базисной для данного ограничения. После проверки всех ограничений получается система в каноническом виде и появляется возможность заполнить начальную симплексную таблицу. Так как введенные переменные не имеют отношения к существу задачи ЛП в исходной постановке, то необходимо добиться обращения в нуль искусственных переменных. Этого можно сделать с помощью двухэтапного симплекс-метода.
Этап 1. Рассматривается искусственная целевая функция, равная сумме искусственных переменных, которая минимизируется при помощи симплекс-метода. Другими словами, производится исключение искусственных переменных. Если минимальное значение вспомогательной задачи равно нулю, то все искусственные переменные обращаются в нуль и получается допустимое базисное решение начальной задачи. Далее реализуется этап 2. Если минимальное значение вспомогательной задачи положительное, то по крайней мере одна из искусственных переменных также положительная, что свидетельствует о противоречивости начальной задачи, и вычисления прекращаются.
Этап 2. Допустимое базисное решение, найденное на первом этапе, улучшается в соответствии с целевой функцией исходной задачи ЛП на основе симплекс-метода, т.е. оптимальная таблица этапа 1 превращается в начальную таблицу этапа 2, и изменяется целевая функция.
9.6. Анализ чувствительности в линейном программировании
Решение практической задачи нельзя считать законченным, если найдено оптимальное решение. Дело в том, что некоторые параметры задачи ЛП (финансы, запасы сырья, производственные мощности) можно регулировать, что, в свою очередь, может изменить найденное оптимальное решение. Эта информация получается в результате выполнения анализа чувствительности. Анализ чувствительности позволяет оценить влияние этих параметров на оптимальное решение. Если обнаруживается, что оптимальное решение можно значительно улучшить за счет небольших изменений заданных параметров, то целесообразно реализовать эти изменения. Кроме того, во многих случаях оценки параметров получаются путем статистической обработки ретроспективных данных (например, ожидаемый сбыт, прогнозы цен и затрат). Оценки, как правило, не могут быть точными. Если удается определить, какие параметры в наибольшей степени влияют на значение целевой функции, то целесообразно увеличить точность оценок именно этих параметров, что позволяет повысить надежность рассматриваемой модели и получаемого решения.
9.7. Решение задач линейного программирования на эвм
Задачи линейного программирования могут быть решены с использованием многих пакетов прикладных программ, а именно:
Statgraphics;
LINDO;
LINGO;
MathCAD;
Mathematica;
MS Excel.
Рис. 9.2.
В качестве примера рассмотрим решение задачи примера 2.1 с использованием MS Excel. Для определенности в ячейки B1:B2, C1 и D1:D3 введем соответственно некоторые начальные значения двух переменных, целевую функцию и левые части функциональных ограничений. При этом необходимо переприсвоить значения x1 на B2 и x2 на B3 (рис. 9.2). Поиск осуществляется с помощью процедуры "поиск решения", которая вызывается из меню "сервис" (рис. 9.3). В появившемся окне (рис. 9.4) необходимо ввести:
В поле "Установить целевую" введите ссылку на ячейку, содержащую целевую функцию (С1).
Введите искомый результат в поле "Равной" (максимальное значение прибыли).
В поле "Изменяя ячейки" введите ссылки на ячейки, содержащие переменные (B2:B3).
В поле "Ограничения" введите с помощью кнопок "добавить", "изменить" и "удалить" ввести функциональные и областные ограничения.
С помощью кнопки "Выполнить" запускаем процедуру на выполнение.
Результаты расчетов представлены на рис. 9.5.
Рис. 9.3.
Рис. 9.4.
Рис.9.5.