
- •Ю.Ю. Герасимов, в.К. Хлюстов
- •Математические методы и модели в расчетах на эвм: применение в лесоуправлении и экологии
- •Часть 1. Вариационная статистика
- •Глава 1.
- •1.1. Общие положения
- •1.2. Основные понятия статистики
- •1.3. Основы теории вероятностей
- •1.3.1. Понятие случайной величины
- •1.3.2. Классическое и статистическое определения вероятности события
- •1.3.3. Основные теоремы теории вероятностей
- •1.4. Контрольные вопросы и задания
- •Глава 2.
- •2.1. Постановка задачи
- •2.2. Классификация и группировка вариант
- •2.3. Графическое представление вариационных рядов
- •2.4.1. Показатели центральной тенденции
- •2.4.2. Показатели вариации
- •2.4.3. Достоверность статистических показателей
- •2.4.4. Показатели скошенности и крутизны
- •2.5. Доверительный интервал
- •2.6. Контрольные вопросы и задания
- •Глава 3.
- •3.1. Постановка задачи
- •3.2. Нормальное распределение
- •3.3. Логнормальное распределение
- •3.4.2. Бета-распределение
- •3.5. Распределение Пуассона
- •3.6. Семейство кривых распределения Джонсона
- •3.7. Семейство кривых Пирсона
- •Контрольные вопросы и задания
- •Глава 4.
- •4.1. Постановка задачи
- •4.3. Сравнение эмпирического распределения с теоретическим (критерий "хи-квадрат")
- •4.5. Сравнение дисперсий двух эмпирических совокупностей
- •4.6. Сравнение частот взвешенных рядов по критерию
- •4.7. Использование пакетов прикладных программ
- •4.8. Контрольные вопросы и задания
- •Глава 5.
- •5.1. Постановка задачи
- •5.2. Однофакторный комплекс
- •5.3. Двухфакторный комплекс
- •5.4. Использование ms Excel для проведения дисперсионного анализа
- •5.4.1. Однофакторный дисперсионный анализ
- •5.4.2. Двухфакторный дисперсионный анализ без повторения
- •5.5. Контрольные вопросы и задания
- •Глава 6.
- •6.1. Постановка задачи
- •6.2. Коэффициент корреляции
- •6.3. Корреляционное отношение
- •6.4. Схема полного корреляционного анализа
- •6.5. Использование пакетов прикладных программ Вычисление коэффициента корреляции с использованием ms Excel
- •Контрольные вопросы и задания
- •Глава 7.
- •7.1. Постановка задачи
- •7.2. Статистический анализ одномерных моделей
- •Уравнение прямой линии
- •Уравнение гиперболы
- •Уравнение показательной кривой
- •Окончательный выбор типа уравнения регрессии
- •7.4. Множественная регрессия
- •7.5. Применение ms Excel для расчета регрессии
- •Часть 2. Исследование операций
- •Глава 8.
- •8.1. Общие положения
- •8.2. Основные понятия системного анализа
- •8.3. Основные понятия исследования операций
- •8.4. Постановка задач принятия оптимальных решений
- •8.5. Контрольные вопросы и задания
- •Глава 9.
- •9.1. Постановка задачи
- •9.2. Графическое решение задачи линейного программирования
- •9.3. Задача линейного программирования в стандартной форме
- •Преобразования неравенств
- •Преобразование неограниченных по знаку переменных
- •2.4. Основы симплекс - метода линейного программирования
- •9.5. Метод искусственных переменных
- •9.6. Анализ чувствительности в линейном программировании
- •9.7. Решение задач линейного программирования на эвм
- •9.8. Контрольные вопросы и задания
- •Глава 10.
- •10.1. Постановка задачи
- •10.2. Метод ветвей и границ
- •10.3. Рекомендации по формулировке и решению задач цп
- •10.4. Задачи оптимизации раскроя
- •XA 0, xB 0, k 0 - целые.
- •XA 0, xB 0, k 0 - целые.
- •10.5. Постановка задачи дискретного программирования
- •Решение задач целочисленного и дискретного программирования на эвм
- •10.7. Контрольные вопросы и задания
- •Глава 11.
- •11.1. Общие понятия
- •11.2. Практические рекомендации при постановке задач динамического программирования
- •11.3. Оптимальное распределение ресурсов
- •11.4. Оптимальное управление запасами
- •11.5. Оптимальная политика замены оборудования
- •11.6. Контрольные вопросы и задания
- •Глава 12.
- •12.1. Постановка задачи
- •12.2. Применение стохастического программирования
- •12.3. Метод статистического моделирования
- •12.4. Контрольные вопросы и задания
- •Глава 13.
- •13.1. Постановка задач нелинейного программирования
- •13.2. Безусловная однопараметрическая оптимизация
- •13.2.1. Методы исключения интервалов
- •13.2.2. Методы полиномиальной аппроксимации
- •13.2.3. Методы с использованием производных
- •13.2.4. Сравнение методов безусловной однопараметрической оптимизации
- •13.3. Безусловная многопараметрическая оптимизация
- •13.3.1. Постановка задачи
- •13.3.2. Методы прямого поиска
- •13.3.3. Градиентные методы
- •13.4. Нелинейная условная оптимизация
- •13.4.1. Постановка задач условной нелинейной оптимизации
- •13.4.2. Методы штрафных функций
- •13.4.3. Методы прямого поиска
- •13.4.4. Методы линеаризации
- •13.5. Решение задач нелинейной оптимизации на эвм
- •13.6. Контрольные вопросы и задания
- •Приложение 1 Значения t - распределения Стьюдента при доверительной вероятности р и числе степеней свободы k
- •Плотность вероятности нормального распределения
- •Приложение 3 Значения χ2 при доверительной вероятности р и числе степеней свободы k
- •Продолжение приложения 3
- •Значения -функции
- •Приложение 5 Значения - в распределении Джонсона
- •Продолжение приложения 5
- •Продолжение приложения 5
- •Продолжение приложения 5
- •Приложение 6
- •Продолжение приложения 6
- •Продолжение приложения 6
- •Продолжение приложения 6
- •Приложение 7
- •Продолжение приложения 7
- •Продолжение приложения 7
- •Продолжение приложения 7
9.2. Графическое решение задачи линейного программирования
Задачи ЛП с двумя переменными поддаются решению графическим способом. Продемонстрируем данный способ на примере 9.1 “Оптимизация размещения побочного производства лесничества”:
5000 x1 + 2500 x2 max,
4 x1 + 1,5 x2 24;
1200 x1 + 150 x2 6000;
20 x1 + 20 x2 200;
x1 2;
x1 0; x2 0.
На первом шаге следует определить все возможные неотрицательные значения переменных x1 и x2, которые удовлетворяют ограничениям. С этой целью в декартовой системе координат (рис. 9.1) наносим линии, соответствующие уравнениям прямых
4 x1 + 1,5 x2 = 24;
1200 x1 + 150 x2 = 6000;
20 x1 + 20 x2 = 200;
x1 = 2; x1 = 0; x2 = 0,
и заштриховываем область, в точках которой выполняются все ограничения. Каждая такая точка называется допустимым решением, а множество всех допустимых решений называется допустимой областью. Очевидно, что решение задачи ЛП состоит в отыскании наилучшего решения в допустимой области, которое, в свою очередь, называется оптимальным. В рассматриваемом примере оптимальное решение представляет собой допустимое решение, максимизирующее функцию 5000x1 + 2500x2. Значение целевой функции, соответствующее оптимальному решению, называется оптимальным значением задачи ЛП. В нашем случае для нахождения оптимального решения достаточно через любую из вершин допустимой области провести прямую целевой функции и вслед за этим путем параллельного переноса полученной прямой найти такие вершины, в которых происходит только касание с допустимой областью.
Максимальный доход в размере 34 тыс. руб. лесничество может извлечь, придерживаясь следующей стратегии - выращивая 3,6 бычка и 6,4 партии растениеводческой продукции. Однако окончательное решение должно быть представлено в целочисленной форме. Как правило, на практике полученные результаты округляют до ближайших целых, что может привести к достаточно грубым ошибкам. В разбираемом примере округление даст x1=3 и x2=6, что приводит к доходу в 30 тыс. руб. Однако достаточно удаленная от оптимального решения стратегия x1=4 и x2=5 приводит к более оптимистичному результату - к 32,5 тыс. руб. Более того, как будет показано далее, еще более далекая точка x1=3 и x2=7 приводит к аналогичному результату. Поэтому расчеты необходимо продолжить с использованием методов целочисленного программирования, которые будут изложены ниже.
Рис. 9.1. Решение задачи ЛП графическим способом
Графический метод, ввиду большой размерности реальных практических задач ЛП, достаточно редко применяется, однако он позволяет ясно представить одно из основных свойств ЛП: если в задаче ЛП существует оптимальное решение, то по крайней мере одна из вершин допустимой области представляет собой оптимальное решение. Несмотря на то, что допустимая область задачи ЛП состоит из бесконечного числа точек, оптимальное решение всегда можно найти путем целенаправленного перебора конечного числа ее вершин. Рассматриваемый далее симплекс-метод решения задачи ЛП основывается на этом фундаментальном свойстве. Прежде чем перейдем к непосредственному применению симплекс-метода, всякая практическая задача должна быть сведена к стандартной форме.