
- •Ю.Ю. Герасимов, в.К. Хлюстов
- •Математические методы и модели в расчетах на эвм: применение в лесоуправлении и экологии
- •Часть 1. Вариационная статистика
- •Глава 1.
- •1.1. Общие положения
- •1.2. Основные понятия статистики
- •1.3. Основы теории вероятностей
- •1.3.1. Понятие случайной величины
- •1.3.2. Классическое и статистическое определения вероятности события
- •1.3.3. Основные теоремы теории вероятностей
- •1.4. Контрольные вопросы и задания
- •Глава 2.
- •2.1. Постановка задачи
- •2.2. Классификация и группировка вариант
- •2.3. Графическое представление вариационных рядов
- •2.4.1. Показатели центральной тенденции
- •2.4.2. Показатели вариации
- •2.4.3. Достоверность статистических показателей
- •2.4.4. Показатели скошенности и крутизны
- •2.5. Доверительный интервал
- •2.6. Контрольные вопросы и задания
- •Глава 3.
- •3.1. Постановка задачи
- •3.2. Нормальное распределение
- •3.3. Логнормальное распределение
- •3.4.2. Бета-распределение
- •3.5. Распределение Пуассона
- •3.6. Семейство кривых распределения Джонсона
- •3.7. Семейство кривых Пирсона
- •Контрольные вопросы и задания
- •Глава 4.
- •4.1. Постановка задачи
- •4.3. Сравнение эмпирического распределения с теоретическим (критерий "хи-квадрат")
- •4.5. Сравнение дисперсий двух эмпирических совокупностей
- •4.6. Сравнение частот взвешенных рядов по критерию
- •4.7. Использование пакетов прикладных программ
- •4.8. Контрольные вопросы и задания
- •Глава 5.
- •5.1. Постановка задачи
- •5.2. Однофакторный комплекс
- •5.3. Двухфакторный комплекс
- •5.4. Использование ms Excel для проведения дисперсионного анализа
- •5.4.1. Однофакторный дисперсионный анализ
- •5.4.2. Двухфакторный дисперсионный анализ без повторения
- •5.5. Контрольные вопросы и задания
- •Глава 6.
- •6.1. Постановка задачи
- •6.2. Коэффициент корреляции
- •6.3. Корреляционное отношение
- •6.4. Схема полного корреляционного анализа
- •6.5. Использование пакетов прикладных программ Вычисление коэффициента корреляции с использованием ms Excel
- •Контрольные вопросы и задания
- •Глава 7.
- •7.1. Постановка задачи
- •7.2. Статистический анализ одномерных моделей
- •Уравнение прямой линии
- •Уравнение гиперболы
- •Уравнение показательной кривой
- •Окончательный выбор типа уравнения регрессии
- •7.4. Множественная регрессия
- •7.5. Применение ms Excel для расчета регрессии
- •Часть 2. Исследование операций
- •Глава 8.
- •8.1. Общие положения
- •8.2. Основные понятия системного анализа
- •8.3. Основные понятия исследования операций
- •8.4. Постановка задач принятия оптимальных решений
- •8.5. Контрольные вопросы и задания
- •Глава 9.
- •9.1. Постановка задачи
- •9.2. Графическое решение задачи линейного программирования
- •9.3. Задача линейного программирования в стандартной форме
- •Преобразования неравенств
- •Преобразование неограниченных по знаку переменных
- •2.4. Основы симплекс - метода линейного программирования
- •9.5. Метод искусственных переменных
- •9.6. Анализ чувствительности в линейном программировании
- •9.7. Решение задач линейного программирования на эвм
- •9.8. Контрольные вопросы и задания
- •Глава 10.
- •10.1. Постановка задачи
- •10.2. Метод ветвей и границ
- •10.3. Рекомендации по формулировке и решению задач цп
- •10.4. Задачи оптимизации раскроя
- •XA 0, xB 0, k 0 - целые.
- •XA 0, xB 0, k 0 - целые.
- •10.5. Постановка задачи дискретного программирования
- •Решение задач целочисленного и дискретного программирования на эвм
- •10.7. Контрольные вопросы и задания
- •Глава 11.
- •11.1. Общие понятия
- •11.2. Практические рекомендации при постановке задач динамического программирования
- •11.3. Оптимальное распределение ресурсов
- •11.4. Оптимальное управление запасами
- •11.5. Оптимальная политика замены оборудования
- •11.6. Контрольные вопросы и задания
- •Глава 12.
- •12.1. Постановка задачи
- •12.2. Применение стохастического программирования
- •12.3. Метод статистического моделирования
- •12.4. Контрольные вопросы и задания
- •Глава 13.
- •13.1. Постановка задач нелинейного программирования
- •13.2. Безусловная однопараметрическая оптимизация
- •13.2.1. Методы исключения интервалов
- •13.2.2. Методы полиномиальной аппроксимации
- •13.2.3. Методы с использованием производных
- •13.2.4. Сравнение методов безусловной однопараметрической оптимизации
- •13.3. Безусловная многопараметрическая оптимизация
- •13.3.1. Постановка задачи
- •13.3.2. Методы прямого поиска
- •13.3.3. Градиентные методы
- •13.4. Нелинейная условная оптимизация
- •13.4.1. Постановка задач условной нелинейной оптимизации
- •13.4.2. Методы штрафных функций
- •13.4.3. Методы прямого поиска
- •13.4.4. Методы линеаризации
- •13.5. Решение задач нелинейной оптимизации на эвм
- •13.6. Контрольные вопросы и задания
- •Приложение 1 Значения t - распределения Стьюдента при доверительной вероятности р и числе степеней свободы k
- •Плотность вероятности нормального распределения
- •Приложение 3 Значения χ2 при доверительной вероятности р и числе степеней свободы k
- •Продолжение приложения 3
- •Значения -функции
- •Приложение 5 Значения - в распределении Джонсона
- •Продолжение приложения 5
- •Продолжение приложения 5
- •Продолжение приложения 5
- •Приложение 6
- •Продолжение приложения 6
- •Продолжение приложения 6
- •Продолжение приложения 6
- •Приложение 7
- •Продолжение приложения 7
- •Продолжение приложения 7
- •Продолжение приложения 7
8.2. Основные понятия системного анализа
Системный анализ - наука, занимающаяся проблемой принятия решения в условиях анализа большого количества информации различной природы.
Из определения следует, что целью применения системного анализа к конкретной проблеме является повышение степени обоснованности принимаемого решения, расширение множества вариантов, среди которых производится выбор с одновременным указанием способов отбрасывания, заведомо уступающим другим.
В системном анализе выделяют:
методологию;
аппаратную реализацию;
практические приложения.
Методология включает определения используемых понятий и принципы системного подхода.
Дадим основные определения системного анализа.
Элемент - некоторый объект (материальный, энергетический, информационный), который обладает рядом важных для нас свойств, но внутреннее строение (содержание) которого безотносительно к цели рассмотрения.
Связь - важный для целей рассмотрения обмен между элементами веществом, энергией, информацией.
Система - совокупность элементов, которая обладает следующими признаками:
связями, которые позволяют посредством переходов по ним от элемента к элементу соединить два любых элемента совокупности;
свойством, отличным от свойств отдельных элементов совокупности.
Практически любой объект с определенной точки зрения может быть рассмотрен как система. Вопрос состоит в том, насколько целесообразна такая точка зрения.
Большая система - система, которая включает значительное число однотипных элементов и однотипных связей. В качестве примера можно привести трубопровод, элементами которого будут являться участки между швами или опорами. Для расчетов на прочность по методу конечных элементов элементами системы считаются небольшие участки трубы, а связь имеет силовой (энергетический) характер - каждый элемент действует на соседние.
Сложная система - система, которая состоит из элементов разных типов и обладает разнородными связями между ними. В качестве примера можно привести ЭВМ, биогеоценоз, лесной трактор или судно.
Автоматизированная система - сложная система с определяющей ролью элементов двух типов:
в виде технических средств;
в виде действия человека.
Для сложной системы автоматизированный режим считается более предпочтительным, чем автоматический. Например, посадка самолета или захват дерева харвестерной головкой выполняется при участии человека, а автопилот или бортовой компьютер используется лишь на относительно простых операциях. Типична также ситуация, когда решение, выработанное техническими средствами, утверждается к исполнению человеком.
Структура системы - расчленение системы на группы элементов с указанием связей между ними, неизменное на все время рассмотрения и дающее представление о системе в целом. Указанное расчленение может иметь материальную, функциональную, алгоритмическую или другую основу. Пример материальной структуры - структурная схема сборного моста, которая состоит из отдельных, собираемых на месте секций и указывает только эти секции и порядок их соединения. Пример функциональной структуры - деление двигателя внутреннего сгорания на системы питания, смазки, охлаждения, зажигания, пуска. Пример алгоритмической структуры - алгоритм программного средства, указывающего на последовательность действий, или инструкция, которая определяет действия при отыскании неисправности технического устройства.
Структура системы может быть охарактеризована по имеющимся в ней типам связей. Простейшими из них являются последовательное, параллельное соединение и обратная связь (рис.8.1).
Декомпозиция - деление системы на части, удобное для каких-либо операций с этой системой. Примерами будут: разделение объекта на отдельно проектируемые части, зоны обслуживания; рассмотрение физического явления или математическое описание отдельно для данной части системы.
Иерархия - структура с наличием подчиненности, т.е. неравноправных связей между элементами, когда воздействие в одном из направлений оказывает гораздо большее влияние на элемент, чем в другом. Виды иерархических структур разнообразны, но важных для практики иерархических структур всего две - древовидная и ромбовидная (рис.8.2).
Последовательное соединение
|
||||||||||||
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|||||||
Параллельное соединение
|
||||||||||||
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|||||||
Обратная связь
|
||||||||||||
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|||||||
Рис. 8.1. Простейшие типы связей |
Принципы системного подхода - это положения общего характера, являющиеся обобщением опыта работы человека со сложными системами. Их часто считают ядром методологии. Известно около двух десятков таких принципов, ряд из которых целесообразно рассмотреть:
принцип конечной цели - абсолютный приоритет конечной цели;
принцип единства - совместное рассмотрение системы как целого и как совокупности элементов;
принцип связности - рассмотрение любой части совместно с ее связями с окружением;
принцип модульного построения - полезно выделение модулей в системе и рассмотрение ее как совокупности модулей;
принцип иерархии - полезно введение иерархии элементов и(или) их ранжирование;
принцип функциональности - совместное рассмотрение структуры и функции с приоритетом функции над структурой;
принцип развития - учет изменяемости системы, ее способности к развитию, расширению, замене частей, накапливанию информации;
принцип децентрализации - сочетание в принимаемых решениях и управлении централизации и децентрализации;
принцип неопределенности - учет неопределенностей и случайностей в системе.
a) |
|
Верхний элемент |
|
|
|
|
b) |
|
|
|
(i+1)-й уровень |
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
1 иерархи-ческий |
|
|
|
|
|
|
i - й уровень |
|
|
|||||||||||
|
|
уровень |
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
2 иерархи- |
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
ческий уровень |
|
|
|
|
|
|
|
|
(i-1)-й уровень |
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
Рис. 8.2. Примеры иерархических структур: a - древовидная, b – ромбовидная |
|
Аппаратная реализация включает стандартные приемы моделирования принятия решения в сложной системе и общие способы работы с этими моделями. Модель строится в виде связных множеств отдельных процедур. Системный анализ исследует как организацию таких множеств, так и вид отдельных процедур, которые максимально приспосабливают для принятия согласующихся и управленческих решений в сложной системе.
Модель принятия решения чаще всего изображается в виде схемы с ячейками, связями между ячейками и логическими переходами. Ячейки содержат конкретные действия - процедуры. Совместное изучение процедур и их организация вытекают из того, что без учета содержания и особенностей ячеек создание схем оказывается невозможным. Эти схемы определяют стратегию принятия решения в сложной системе. Именно с проработки связанного множества основных процедур принято начинать решение конкретной прикладной задачи.
Отдельные же процедуры (операции) принято классифицировать на формализуемые и неформализуемые. В отличие от большинства научных дисциплин, стремящихся к формализации, системный анализ допускает, что в определенных ситуациях неформализуемые решения, принимаемые человеком, являются более предпочтительными. Следовательно, системный анализ рассматривает в совокупности формализуемые и неформализуемые процедуры, и одной из его задач является определение их оптимального соотношения.
Формализуемые стороны отдельных операций лежат в области прикладной математики и использования ЭВМ. В ряде случаев математическими методами исследуется связное множество процедур и производится само моделирование принятие решения. Все это позволяет говорить о математической основе системного анализа. Такие области прикладной математики, как исследование операций и системное программирование, наиболее близки к системной постановке вопросов.
Практическое приложение системного анализа чрезвычайно обширно по содержанию. Важнейшими разделами являются научно-технические разработки и различные задачи экономики. Ссылки на системность исследований, анализа, подхода включают биологию, экологию, военное дело, психологию, социологию, медицину, управление государством и регионом, лесное и сельское хозяйство, обучение и многое другое.