Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математические методы.doc
Скачиваний:
57
Добавлен:
30.07.2019
Размер:
7.16 Mб
Скачать

Глава 7.

регрессионный анализ

7.1. Постановка задачи

Математические выражения, отражающие причинно-следственные взаимосвязи и взаимодействия в системах (или модели связи) являются основными типами моделей, применяемых в области лесного дела. В качестве математической формы эмпирических моделей связи в основном используют регрессионные уравнения и реже - интерполяционные многочлены. В первом случае применяют различные модификации метода наименьших квадратов, позволяющие просто и достаточно надежно оценить статистическим путем разрабатываемую модель. Второй метод сводится к механической процедуре аналитического выражения числовых массивов.

Метод наименьших квадратов

Для вычисления коэффициентов регрессионных уравнений основным методом является метод наименьших квадратов, предложенный в начале XIX в. Лежандром и Гауссом. Требование метода наименьших квадратов заключается в том, чтобы теоретические точки линии регрессии yx должны быть получены таким образом, чтобы сумма квадратов отклонений от этих точек эмпирических значений yi была минимальной, то есть

(yiyx)2  min. (7.1)

Методом регрессионного анализа получены практически все наиболее содержательные биометрические закономерности в лесном деле. Однако метод наименьших квадратов имеет существенные недостатки чисто познавательного плана: во-первых, по своей сути он не учитывает природной сущности изучаемого явления и допускает известный произвол в выборе конкретных типов уравнений, а во-вторых, предполагает детерминированный характер изучаемого процесса. Поэтому в последнее время все большее внимание привлекают вероятностные модели (особенно для отражения процессов, протекающих во времени), использующие методы теории случайных функций.

Если для разработки модели связи информация еще не собрана, то планирование работ позволяет значительно улучшить результаты, так как лучше потратить часть времени и средств для предварительной оценки ситуации, выбора независимых переменных и их анализа. Главное здесь, как и во многих других случаях применения математических средств, это точная формулировка задачи и преследуемых целей. Будем применять следующие термины: адекватность модели—соответствие исходным данным, подтвержденное статистическими критериями; корректность—ее приемлемость (с точки зрения пользователя), соответствие моделируемому процессу или системе. Так, формальные статистические методы могут подтвердить высокую вероятность адекватности модели, но особенности информации, преимущественно в малых выборках, могут привести к результатам, неприемлемым с точки зрения существа явления; иначе говоря, корректную модель следует считать в известном смысле лучшей.

Модели, имеющие одну независимую переменную, называют одномерными, а более двух переменных - многомерными (множественные регрессионные уравнения). Наконец, по форме модели связи могут быть представлены в табличном, графическом или аналитическом (математическом) виде.

Регрессионные уравнения бывают линейные и нелинейные, причем этот термин может относиться как к коэффициентам уравнения, так и к независимой переменной. В данной главе рассматриваются уравнения линейные относительно коэффициентов, поскольку модели такого рода вполне достаточны для моделирования связей в лесном деле. Теория нелинейного (по коэффициентам) оценивания сложна, но многие нелинейные модели можно привести к линейному виду; такие модели называют внутренне линейными.