
Четвертое поколение эвм
Механические детали счетных машин уступили место электронным лампам, которые в свою очередь уступили место транзисторам, а последние - ИС.
В начале 70-х годов XX века была предпринята попытка выяснить: можно ли на одном кремниевом кристалле разместить больше одной интегральной схемы. Оказалось - можно! Развитие микроэлектроники позволило размещать на одном кристалле тысячи ИС. Так, уже 1980 году центральный процессор небольшой ЭВМ оказалось возможным разместить на кристалле площадью всего 1,61 мм 2. Началась эпоха миникомпьютеров.
Быстродействие современной микро-ЭВМ в 10 раз превышает быстродействие ЭВМ третьего поколения на ИС, в 1000 раз - быстродействие ЭВМ второго поколения на транзисторах и в 10000 раз - быстродействие ЭВМ первого поколения ЭВМ на электронных лампах.
Требования к компьютерам пятого поколения
Разработка новых поколений компьютеров производится на основе БИС повышенной степени интеграции, использование оптоэлектронных принципов (лазеры, голография). Развитие идет также по пути "интеллектуализации" компьютеров, устранения барьера между человеком и компьютером. Компьютеры будут способны воспринимать информацию с рукописного или печатного текстов, человеческого голоса, с бланков, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой.
В компьютерах пятого поколения произойдет качественный переход от обработки данных к обработке знаний.
Архитектура компьютера будущего поколения будет содержать два основных блока. Один из них - это традиционный компьютер, но теперь он лишен связи с пользователем. Эту связь осуществляет блок так называемый интеллектуальный интерфейс. Эго задача - понять текст, написанный на естественном языке и содержащий условие задачи, и перевести его в работающую программу компьютера.
Будет также решаться проблема децентрализации вычислений с помощью компьютерных сетей, как больших, находящихся на значительном расстоянии друг от друга, так и миниатюрных компьютеров, размещенных на одном кристалле полупроводника.
Компьютерная техника в России (ссср)
Следует отметить, что становление и развитие вычислительной техники в СССР шло в послевоенные годы в условиях отсутствия контактов с учеными Запада: разработка ЭВМ за рубежом велась в условиях секретности, поскольку первые цифровые электронные машины предназначались, в первую очередь, для военных целей.
Вычислительная техника в СССР в этот период шла своим собственным путем, опираясь на выдающиеся научные результаты отечественных ученых.
С именами основоположников цифровой электронной вычислительной техники связаны исторически важные события:
- организация первой в СССР вычислительной лаборатории, прообраза будущих вычислительных центров (И.Я. Акушский, 1941);
- разработка первого в СССР проекта цифровой электронной вычислительной машины (И.С. Брук, Б.И. Рамеев, август 1948 г.);
- обоснование принципов построения ЭВМ с хранимой в памяти программой, независимо от Джона фон Неймана (СА. Лебедев, октябрь-декабрь 1948 г.);
- регистрация первого в СССР свидетельства об изобретении цифровой ЭВМ (И.С. Брук, Б.И. Рамеев, декабрь 1948 г.);
- первый пробный пуск макета малой электронной счетной машины МЭСМ (С.А. Лебедев, ноябрь 1950 г.);
- приемка Государственной комиссией МЭСМ - первой в СССР и континентальной Европе ЭВМ, запущенной в регулярную эксплуатацию (С.А. Лебедев, декабрь 1951 г.);
- завершение отладки и запуск в эксплуатацию первой в Российской федерации ЭВМ М-1 (ИС. Брук, Н.Я. Матюхин, январь 1952 г.);
- выпуск первых в СССР промышленных образцов ЭВМ (Ю.Я. Базилевский, Б.И. Рамеев, 1953 г., ЭВМ "Стрела");
- создание самых производительных в Европе (на момент ввода в эксплуатацию) быстродействующих электронных вычислительных машин: БЭСМ (апрель 1953 г.), М-20 (1958 г.) и БЭСМ-6 (1967 г.) С.А. Лебедев, (М.К. Сулим, ВА. Мельников);
- ввод в эксплуатацию СЭСМ - первого в Союзе матрично-век-торного процессора (СА Лебедев, ЗЛ. Рабинович, январь 1955 г.);
- разработка первых в СССР универсальных ЭВМ общего назначения "Урал-7", "Урал-2', "Урал-3", "Урал-4' (Б.И. Рамеев, 50-е гг.);
- создание первого в Советском Союзе семейства программно и конструктивно совместимых универсальных ЭВМ общего назначения "Урал-11", "Урал-14", "Урал-16" (Б.И. Рамеев, В.И. Бурков, А.С. Горшков, 60-е гг.);
- разработка и серийный выпуск первых в СССР малых универсальных ЭВМ М-3 и "Минск-1" (И.С. Брук, Н.Я. Матюхин, Г.П. Ло-пато - 1956-1960 гг.);
- создание первой и единственной в мире троичной ЭВМ "Сетунь" (П. П. Брусенцов, 1958 г.);
- создание первой (и, вероятно, единственной в мире) суперпроизводительной специализированной ЭВМ с использованием системы счисления в остатках (И.Я. Акушский, 1958 г.);
- разработка теории цифровых автоматов (В.М. Глушков, 1961 г.);
- предложена идея схемной реализации языков высокого уровня (В.М. Глушков, ЗЛ. Рабинович, 1966 г.);
- разработка первых в СССР машин для инженерных расчетов "Промшь" и МИР - предвестников будущих персональных ЭВМ (В.М. Глушков, С. Б. Погребинский, 1959-1965 гг.);
- создание первой в СССР полупроводникдвой управляющей машины широкого назначения "Днепр" (В.М. Глушков, Б.Н. Малиновский, I960 г.);
- применение впервые в СССР микропрограммного управления в ЭВМ (Н.Я. Матюхин, ЭВМ "Тетива", 1961 г.);
- создание первой в СССР (и, возможно, единственной в мире) ЭВМ <• использованием только прямых кодов операндов (Н.Я. Матюхин, ЭВМ "Тетива", 1961 г.);
- выдвижение впервые в СССР идеи многопроцессорной системы (C. А. Лебедев, 1956 г.);
- высказана идея мозгоподобных структур ЭВМ (В.М. Глушков, 1461 г.);
- первое в СССР использование виртуальной памяти и асинхронной конвейерной структуры ЭВМ (СА. Лебедев, БЭСМ-6, 1967 г.);
- предложены принципы построения рекурсивной (не неймановской) ЭВМ (В.М. Глушков, ВА. Мясников, И. Б. Игнатьев, 1974 г.);
- реализация первой в мире многоформатной векторной структуры ЭВМ (МЛ. Карцев, ЭВМ М-10, 1974 г.);
- впервые в мире предложена и реализована концепция полностью параллельной вычислительной системы - с распараллеливанием на всех четырех уровнях: программ, команд, данных и слов (МЛ. Карцев, вычислительные комплексы на базе ЭВМ М-10, 70-е гг.);
- создан первый в СССР мобильный управляющий многопроцессорный комплекс на интегральных схемах с автоматическим резервированием на уровне модулей, производительностью 1,5 млн. операций в секунду (СЛ. Лебедев, В.С. Бурцев, ЭВМ 5Э26, 1978 г.);
- разработан проект первой в СССР векторно-конвейерной ЭВМ (МА. Карцев, ЭВМ М-13, 1978 г.).
Это лишь главные результаты основных научных школ, руководимых СА. Лебедевым, Б.И. Рамеевым, И.С. Бруком, В.М. Глушковым, возникших в годы становления цифровой электронной вычислительной техники и выполнивших разработку основных классов ЭВМ того времени.
Научная школа СА. Лебедева обеспечила создание наиболее сложного класса средств вычислительной техники - супер-ЭВМ, в том числе машин специального назначения. Пензенская научная школа, возглавляемая Б.И. Рамеевым, последовательно и весьма успешно решала задачу создания универсальных ЭВМ общего назначения. Научная школа И.С. Брука вела разработку малых и управляющих ЭВМ. Позднее работы учеников И.С. Брука вышли за эти рамки, - добавились исследования в области мощных специализированных ЭВМ (М.А. Карцев, Н.Я. Матюхин) и теории ЭВМ (М.А. Карцев). Научная школа В.М. Глушкова получила широкую известность благодаря исследованиям в области цифровых автоматов, систем проектирования ЭВМ, теории и практики построения ЭВМ для инженерных расчетов, машин с высоким внутренним интеллектом и управляющих машин.
Помимо "классических" средств вычислительной техники, разработанных коллективами упомянутых научных школ, в эти же годы были созданы уникальные, практически единственные в мире троичная ЭВМ "Сетунь" (Н.П. Брусенцов) и ЭВМ на основе системы счисления в остатках (И.Я. Акушский).
Одновременно с ЭВМ для вычислительных центров в СССР разрабатывались машины для построения оборонительных систем.
"Холодная война" привела к необходимости создания эффективной системы предупреждения о ракетном нападении (СПРН) и наблюдения за космическим пространством, систем противоракетной и противовоздушной обороны (ПРО и ПВО, соответственно).
Машины для СПРН разрабатывались под руководством М.А. Карцева, для системы ПРО - под руководством С.А. Лебедева, для системы ПВО - под руководством Н.Я. Матюхина.
Огромная работа была выполнена этими учеными и руководимыми ими коллективами, по созданию ЭВМ для систем военного назначения, ставших важной частью оборонного комплекса, позволившего добиться паритета между СССР и США, что стало существенным сдерживающим фактором в перерастании "холодной" войны в горячую.
Однако Советский Союз к 80-м годам 20-го века потерял высокие позиции в области вычислительной техники, ввиду ряда причин.
Это, во-первых, административно-волевое решение повторить ("советизировать") американскую систему машин IBM-360, против чего активно возражали Лебедев, Рамеев, Глушков, Сулим и ряд других ученых.
Во-вторых, это ничем не обоснованное, освященное правительством "разрезание" в 70-х годах компьютерной промышленности на три части: микроэлектронные элементы (производитель Министерство электронной промышленности МЭП), универсальные ЭВМ (Министерство радиопромышленности МРП) и управляющие ЭВМ (Министерство приборостроения, автоматики и систем управления ПСА и СУ). В результате каждое из министерств, не придерживаясь достигнутой ранее договоренности, стало разрабатывать полную гамму вычислительных средств, не очень-то стараясь помогать друг-другу. МРП и Министерство ПСАШ СУ, где были сосредоточены лучшие специалисты, лишились, по существу, современной электронной базы, и их разработки заранее оказались обречены на неудачу, а МЭП, в котором кадры разработчиков практически отсутствовали, но имелась мощная промышленная база для выпуска средств микроэлектроники, не желая "."итерироваться с другими министерствами, решило повторять американские разработки, пойдя на заведомо многолетнее отставание от мирового уровня.
В-третьих, повлияла недооценка роли академической науки и ее отрыв от промышленного производства, из-за чего реализация передовых научных результатов, как правило, осуществлялась с большим трудом и потерей времени.
1
2 Elektronic Delay Storage Automatic Computer EDSAC