
- •1. Углеводы. Их роль, классификация, содержание в растениях.!
- •2. Особенности питания растений аммонийными и нитратными солями.!
- •3. Ростовые движения /тропизмы, настии /, их природа и значение в жизни растений.!
- •5. Физиологическая роль азота. Особенности азотного питания растений.!
- •6. Влияние внешних и внутренних факторов на фотосинтез
- •7. Растительная клетка как осмотическая система
- •8. Ростовые корреляции.
- •16. Фотосинтез как основа продуктивности с/х растений.
- •17. Засухоустойчивость и жароустойчивость. Физиологические причины повреждения и гибели растений от почвенной и воздушной засухи. Диагностика и пути повышения засухоустойчивости.
- •18. Белки растений, их состав, структура и функции. Содержание в растениях. Питательная ценность.
- •19. Транспирация. Зависимость её от внутренних и внешних условий, методы учета и возможности регулирования транспирации.
- •20.1. Жаростойкость растений
- •4. Холодостойкость растений
- •22. Роль дыхания в биосинтезе белков, липидов, нуклеиновых кислот и других веществ.
- •23. Физиология цветения, роль внутренних и внешних факторов в инициации цветения.
- •24. Физиологические основы диагностики минерального питания растений.
- •25. Сущность и физиологическая роль процесса дыхания. Возможные пути окисления субстратов дыхания.
- •26. Холодоустойчивость растений. Причины повреждения и гибели теплолюбивых культур при низких положительных температурах. Способы повышения холодоустойчивости.
- •29. Зимостойкость как устойчивость растений к комплексу неблагоприятных факторов в осенне-зимне-весенний периоды. Причины повреждений растений и меры их снижения.
- •31.Водный баланс- соотношение между поглощаемой и расходуемой воды за определённый период
- •32. Анаэробное дыхание осуществляется в эндоплазматической сети, ядре, во всех мембранах.
- •36. Светолюбивые и теневыносливые растения, их физиологические различия. Использование знаний о светолюбии и теневыносливости растений в агрономической практике.
- •37. Дегидрогеназы и оксидазы растений, их химическая природа и функции.
- •38. Биологическое значение покоя, виды покоя, способы его продления и прерывания.
- •40.Физиологические основы орошения
- •44 Световая (светозависимая) стадия
- •45.В клетках растений существует по крайней мере четыре типа мембранного транспорта ионов - пассивная диффузия, облегченная диффузия, первично-активный и вторично-активный транспорт.
- •46.Лежкость –
- •55Полегание растений
- •66.Поглощение воды растением.
- •67. Физико - химическая сущьность фотосинтеза. Лист ,как орган фотосинтеза.Хим. Состав , структура и функции хлоропластов.
- •68 Влияние внутренних и внешних факторов на рост и развитие растений. Контроль за ростовыми процессами посевов и насаждений.
- •69.Параметры оценки фитоценозов, как фотосинтезирующих систем.
- •70. Механизмы поглощения веществ растительной клеткой. Пассивный и активный транспорт веществ.
- •75 Транспирационный коэффициент-число граммов воды израсходованное на образование 1грамма вещества. Колеблется от 125-1000.Средний 300.
- •81. Формирование качества урожая в зависимости от условий возделывания культур.
- •82. Физиология формирования семян. Взаимодействие вегетативных и репродуктивных органов в процессе формирования семян.
- •83. Липиды, их химическая природа и функции, содержание в растениях.
- •84. Фотосинтез и урожай.
- •85. . Физиологические основы хранения урожая.
- •86. Поглощение элементов минерального питания растением.
82. Физиология формирования семян. Взаимодействие вегетативных и репродуктивных органов в процессе формирования семян.
В семени различают три основные части:1)покровные ткани,функция которых заключается в защите внутренних частей от механических повреждений ,в предотвращении неблагоприятных внешних влияний на зародыш, в регуляции газообмена и водообмена; 2) эмбриональные ткани (зачаточные стебелек, корехuки, листочки); 3) вместилище запасных веществ.
У большинства двудольных растений вместилищем запасных веществ служат семядоли, а у однодольных — зндосперм, который образуется из вторичного ядра зародьишевого мешка после слияния его со спермием пьльцевой трубки.
По химическому составу эрелые семена сельскохозяйственных растений можно разделить на три грурпы:
1) семена, богатые крахмалом;
2) семена, богатые белком;
3) семена, богатые жирами
Прорастание семян начинается с потлощения воды, набухания, разрастания эмбриональной части и разрыва наружной семенной оболочки. При прорастании под влиянием ферментов происходит разложение сложных органических запасных веществ семени: белкоа — до аминокислот, полисахаридов — До моносахаридовi жиров — До жирных кислот, оксикислот, альдегидов, которые потреблятся зародышем. Эндосперм опустошается, отчего он обычно сморщивается и затем отсыхает, а семядоли, выполнящие функции первых листьев, выносятся на поверхнОсть, зеленет и разрастатся. Позже, когда зародыш становится проростком, взрослым растением,функция семидолей как первых листьев отпадает. Рост зародыша семени заключается в новообразовании, в увеличении размеров зачаточных органов — корепэков, листочков — в результате деления клеток и разрастания тканей меристемы.
Взаимодействие органов растения.
Растительный организм представляет единое целое. Каждая его часть развивается в специфической связи с остальнымн.
Широко известен способ размножения растений черенками. Незначительный отрезок побега с почкой после отделения его от материнского организма образует новую точку роста и из нее целое растение.
У некоторых растений даже кусочек листа, стебля или корня может дать начало новому растению.
В практике физиологических исследований процессы дыхания,фотосинтеза, транспирации и другие функции часто изучаются на отделенных от растения ветвях и даже на отдельных листьях. Поэтому
может сложиться ошибочное впечатление, что растительный организм представляет не единое целое, а колоi-~ию отдельных частей, мало связанных между собой.
Несмотря на явно выраженную способность отделенных от материнского организма частей растения самостоятельное существование, растительный организм представляет собой единое целое. доказательством этого является саморегуляция саморазвитие
и самовоёпровзведение на основе внутренних процессов и взаимодействия различных частей как органического целого, что свидетельствует о координированхiости частей растений и их взаимной связи.
83. Липиды, их химическая природа и функции, содержание в растениях.
Липиды — это жироподобные органические соединения, нерастворимые в воде, но хорошо растворимые в неполярных растворителях (эфире, бензине, бензоле, хлороформе и др.). Липиды принадлежат к простейшим биологическим молекулам.
В химическом отношении большинство липидов представляет собой сложные эфиры высших карбоновых кислот и ряда спиртов. Наиболее известны среди них жиры. Каждая молекула жира образована молекулой трехатомного спирта глицерола и присоединенными к ней эфирными связями трех молекул высших карбоновых кислот. Согласно принятой номенклатуре, жиры называют триацилглщеролами.
Атомы углерода в молекулах высших карбоновых кислот могут быть соединены друг с другом как простыми, так и двойными связями. Из предельных (насыщенных) высших карбоновых кислот наиболее часто в состав жиров входят пальмитиновая, стеариновая, арахиновая; из непредельных (ненасыщенных) — олеиновая и линолевая.
Степень ненасыщенности и длина цепей высших карбоновых кислот (т. е. число атомов углерода) определяют физические свойства того или иного жира.
Жиры с короткими и непредельными кислотными цепями имеют низкую температуру плавления. При комнатной температуре это жидкости (масла) либо мазеподобные вещества (жиры). И наоборот, жиры с длинными и насыщенными цепями высших карбоновых кислот при комнатной температуре становятся твердыми. Вот почему при гидрировании (насыщении кислотных цепей атомами водорода по двойным связям) жидкое арахисовое масло, например, становится мазеобразным, а подсолнечное масло превращается в твердый маргарин. По сравнению с обитателями южных широт в организме животных, обитающих в холодном климате (например, у рыб арктических морей), обычно содержится больше ненасыщенных триацилглицеролов. По этой причине тело их остается гибким и при низких температурах.
В фосфолипидах одна из крайних цепей высших карбоновых кислот триацилглицерола замещена на группу, содержащую фосфат. Фосфолипиды имеют полярные головки и неполярные хвосты. Группы, образующие полярную головку, гидрофильны, а неполярные хвостовые группы гидрофобны. Двойственная природа этих липидов обусловливает их ключевую роль в организации биологических мембран.
Еще одну группу липидов составляют стероиды (стеролы). Эти вещества построены на основе спирта холестерола. Стеролы плохо растворимы в воде и не содержат высших карбоновых кислот. К ним относятся желчные кислоты, холестерол, половые гар-моны, витамин D и др.
К липидам также относятся терпены (ростовые вещества растений — гиббереллины; каротиноиды — фотосинтетичские пигменты; эфирные масла растений, а также воска).
Липиды могут образовывать комплексы с другими биологическими молекулами — белками и сахарами.
Функции липидов следующие:
Структурная. Фосфолипиды вместе с белками образуют биологические мембраны. В состав мембран входят также стеролы.
Энергетическая. При окислении жиров высвобождается большое количество энергии, которая идет на образование АТФ. В форме липидов хранится значительная часть энергетических запасов организма, которые расходуются при недостатке питательных веществ. Животные, впадающие в спячку, и растения накапливают жиры и масла и расходуют их на поддержание процессов жизнедеятельности. Высокое содержание липидов в семенах растений обеспечивает развитие зародыша и проростка до их перехода к самостоятельному питанию. Семена многих растений (кокосовой пальмы, клещевины, подсолнечника, сои, рапса и др.) служат сырьем для получения растительного масла промышленным способом.
Защитная и теплоизоляционная. Накапливаясь в подкожной клетчатке и вокруг некоторых органов (почек, кишечника), жировой слой защищает организм животных и его отдельные органы от механических повреждений. Кроме того, благодаря низкой теплопроводности слой подкожного жира помогает сохранить тепло, что позволяет, например, многим животным обитать в условиях холодного климата. У китов, кроме того, он играет еще и другую роль — способствует плавучести.
Смазывающая и водоотталкивающая. Воск покрывает кожу, шерсть, перья, делает их более эластичными и предохраняет от влаги. Восковой налет имеют листья и плоды многих растений.
Регуляторная. Многие гормоны являются производными хо-лестерола, например половые (тестостерон у мужчин и прогестерон у женщин) и кортикостероиды (альдостерон). Производные холестерола, витамин D играют ключевую роль в обмене кальция и фосфора. Желчные кислоты участвуют в процессах пищеварения (эмульгирование жиров) и всасывания высших карбоновых кислот.